
OpenBSD rc.d(8)

BSDCan 2016

Antoine Jacoutot
ajacoutot@openbsd.org

Abstract

In this paper we will present the OpenBSD rc.d(8) framework and rc.subr(8) daemon control routines 
written by Robert Nagy (robert@openbsd.org) and myself with the valuable input of Ingo Schwarze 
(schwarze@openbsd.org).

While it resembles other implementations, it was written from scratch to match the project objectives 
(simple, sequential, non-intrusive). We will describe the internals of rc.d and rc.subr as well as the rcctl(8) 
tool. We will also talk about the implications that these had on the traditional BSD start-up sequence.

Introduction

OpenBSD has always used the traditional static BSD initialization script: /etc/rc.
While dependable, it did not allow for easy integration with monitoring, configuration management 
software and/or any kind of tools requiring automated service handling.
rc.d(8) was developed to abstract service management while pertaining the existing behavior like predictive 
and sequential start-up ordering (dependency-less).

The following sections will briefly describe our requirements as well as the existing implementations and 
alternatives and explain why it was decided to write one from scratch. We will see how we managed to plug
ourselves into the existent without having to transform it. We will learn how to use the rc.d control scripts 
then talk about the internals of rc.subr and how start-up scripts look like. We will then introduce rcctl: an 
all-in-one utility for managing rc(8) daemons and services and look at how it helped orchestration and 
configuration management tools to work on OpenBSD.

Description of rc on OpenBSD

The way OpenBSD boots hasn't changed much since its inception. The boot loader will launch the kernel 
which will execute init(1) as the last stage of the boot process; init will then run the sequence of events 
described in /etc/rc.

/etc/rc starts by doing some housekeeping, checking the disks, mounting partitions, setting the NIS domain 
name, setting up ttys flags... Note that whether we are booting into single-user mode or multi-user mode, 
the behavior is different (e.g. network and daemons aren't started in single-user mode). Only the multi-user
mode is relevant to rc.d and this is what we will describe now.

Before rc starts most system daemons, the /etc/netstart script is executed. Its role is to setup anything 
network-related (IP, carp,(4) multicast, …). It is important to note that this is not controlled by the rc.d 
framework which is only meant for handling daemons.

OpenBSD rc.d(8) Jan 19, 2016 - 19:29 1

mailto:ajacoutot@openbsd.org


OpenBSD rc.d(8)

At this stage it is needed to understand and differentiate the concept of daemon and service. A daemon is 
just your usual evil program configured to run in the background (e.g. sshd, ntpd) while a service is a 
“facility” (e.g. pf, ipsec, check_quotas); rc.d only handles daemons.

To decide whether a daemon should be started or a service should be enabled, rc will read its configuration 
from two files:

• /etc/rc.conf, which contains the default configuration
• /etc/rc.conf.local, which contains rc.conf(8) overrides

Starting a daemon and setting its flags is configured using a single configuration variable: “daemon_flags”. A 
value of “NO” means the daemon is not enabled and will not start. Any other value will start the daemon 
using the flags contained in “daemon_flags” (which can be empty in which case the daemon will start 
without any flags).

Starting a service is configured using the “service” name variable. A value of “YES” will enable the service 
and “NO” will disable it.

Values listed in rc.conf.local(8) will always take precedence:  if rc.conf contains “sshd_flags=” and 
rc.conf.local contains “sshd_flags=NO”, then sshd will not start.

There are a few other shell scripts that are not part of rc.d per se but that /etc/rc will run. These files do not 
exist by default and are always executed using sh(1).

• /etc/rc.securelevel, actions that must be run before the securelevel(7) changes
• /etc/rc.firsttime, actions that are only run once (rc will remove rc.firsttime afterward)
• /etc/rc.local, misc actions (used to start non-base daemons before rc.d was introduced)
• /etc/rc.shutdown, actions needed to run before the system shuts down

This is how things worked before and after rc.d was introduced.

Existing implementations and alternatives

Although several implementations and alternatives exist, it was decided not to base OpenBSD rc.d on any of
them. There are various reasons for that amongst which were:

• the need to preserve the existing behavior (not a replacement: we must plug rc.d on top)
• the need to only handle daemons
• the requirement for a small, robust, comprehensive, maintainable and easily debuggable 

framework
• something that needs to be both simple and simple (we do not like knobs!)

We did not want to implement a complete replacement, such as using an event driven or socket activated 
facility.

Amongst the numerous existing alternatives and implementations, some were dismissed pretty much right 
away because they are targeted to a specific operating system (Linux, Solaris, Mac OS),  have a bad license 
(GPL is not acceptable), would replace existing components like init(8), inetd,(8) cron(8)... or more generally 

OpenBSD rc.d(8) Jan 19, 2016 - 19:29 2



OpenBSD rc.d(8)

would require a huge porting effort which would transform the current paradigm and probably introduce 
dangerous bugs.
e.g. systemd, SMF and launchd.

OpenRC (from Gentoo Linux), runit and daemontools  are interesting alternatives. They do not have to 
replace init but still provide too much. There's a lot of support for specific things we don't need. They would
also transform the entire start-up sequence which would require many modifications to keep the existing 
behavior working without much gain compared to a brand new implementation.

FreeBSD and NetBSD rc.d and rcorder could have been the obvious choice but again, they provided too 
much. The rc.d scripts are also too flexible (which can be a feature but not in our case) and the framework 
provides a dependency-based dynamic start-up ordering which was against our goals because we wanted to
keep full control over the start-up sequence. It is our opinion that automatic determination of daemon 
start-up is pointless because if a machine is running a very large number of services in production, that's a 
bad system design in the first place and it's easier to order a small number by hand than to debug issues 
with automatic ordering.

There are a few other less known alternatives but eventually we agreed that such functionality was better 
implemented close to the underlying operating system and so it was decided to write something from 
scratch that is really small and targeted to our own requirements; nothing more, nothing less.
To summarize, other alternatives were too clever for us and would take care of much more than what we 
wanted: starting the network, mounting file-systems, setting up ttys... were out-of the scope for the 
framework we wanted to build.

Plug-in ourselves into the existent

When rc.d was first introduced in OpenBSD on October 2010, it was designed for ports only. Moving base 
was not part of the initial scope because we needed to prove the solution was viable and non intrusive 
before it could be considered for base. It was however the ultimate goal.
Having seen users struggle with how to interact with services (kill, apachectl, rndc...) or enable/disable 
them (multicast=YES versus sshd_flags=, sshd_flags=NO) we were confident it would be a welcome 
change eventually even for old-timer.

The first rule we enforced upon ourselves was to use the already available and standard facility for signaling 
daemons: kill(1). The use of PID files was discarded for the usual reasons (racy, left-over files...). We knew it 
would not be enough for everything out there (some daemons require a helper to cleanly shutdown...) but 
it was good enough that we could make it a default. That's the reason why something like start-stop-
daemon(8) to control creation and termination of the daemon processes was not considered. Since the 
whole rc framework was just a bunch of shell scripts, extending it meant that we had to keep using shell, for
better or worse.

Since we had to be able to plug this new framework into the existent without any disruption, we decided to 
start by not modifying /etc/rc at all but instead use the /etc/rc.local script where external packages 
daemons were traditionally started from.

And so we did:

OpenBSD rc.d(8) Jan 19, 2016 - 19:29 3



OpenBSD rc.d(8)

for _r in $rc_scripts; do
[ -x /etc/rc.d/${_r} ] && /etc/rc.d/${_r} start && echo -n " ${_r}"

done

At that time, /etc/rc.d/rc.subr which is sourced by the rc.d scripts and which provides all subroutines for rc.d
was 54 lines long. It couldn't get simpler than that but of course needed to be extended to cope with all the 
weird and different daemons out there. This will be described in the upcoming sections.

A few code iterations and one release later, rc.d eventually found its way into handling base system 
daemons. Besides the obvious benefits of having a generic way to interact with processes, a nice side effect 
was environment sanitation. Under some circumstances some unwanted variables could end up being 
injected into the process environment leading to unexpected and/or dangerous behavior. The “old” way was
not so secure after all and could retrospectively be considered as “broken”. Thanks to the use of su(1) in 
rc.d, the calling user environment is discarded. That was the decisive factor for rc.d adoption in base.

As of today, rc.subr is about 219 lines of code which is very small considering that /etc/rc lost about more 
than a 150 lines and the feature gain we won.

Features and usage

There are 4+1 actions available:
• start → /path/to/daemon --flags
• stop → pkill
• reload → pkill -HUP
• check → pgrep
• restart → stop && start

Actions must be run as a privileged user (sudo(8), doas(1), root) except for check (albeit not always true as 
we will see further on).

In addition to these, there are 2 optional flags that can be passed to a script:
• -d → debug mode; describe the action taken and display the daemon stdout/stderr output
• -f → force mode; allow starting a base daemon when it is not enabled (i.e. daemon_flags=NO – 

similar to “onestart” in FreeBSD and NetBSD); packages rc.d scripts usually never need this flag 
because they do not have default flags registered in rc.conf.

Keeping the number of actions down really matters because that's the main user interface.

start
This action will start the daemon with its corresponding flags, timeout, user and login class.
su -l -c daemon -s /bin/sh root -c "/path/to/daemon --flags"

stop 
This action will stop the daemon by sending a SIGTERM to the matching process name.
pkill -xf "process name"

reload

OpenBSD rc.d(8) Jan 19, 2016 - 19:29 4



OpenBSD rc.d(8)

This action will ask the daemon to re-read its configuration file by sending a SIGHUP to the matching 
process name.
pkill -HUP -xf "process name"

check
This action will check whether the daemon is running by grep(1)ping the process list for the matching 
process pattern.
pgrep -q -xf "process pattern"

restart
This action will run the stop action then if successful it will run start.
/etc/rc.d/daemon stop && /etc/rc.d/daemon start

By default, the “process pattern” known as the “pexp” in rc.d is constructed using the daemon path (set by 
the rc.d script) and its flags (set by the rc.d script or rc.conf{.local}).
When the rc.d script runs the start action, it stores the value of pexp under /var/run/rc.d/daemon. We use 
this information when a daemon rc.d configuration is changed to make sure we match the currently running
daemon process line.

All these actions are fully configurable and overridable as will be explained in the next section.

This is how a typical rc.d script looks like, most do not need to contain anything more than:
#!/bin/sh
#
# $OpenBSD$

daemon="/path/to/daemon" # path to the executable we will run

. /etc/rc.d/rc.subr      # source rc.subr to get rc.d functions and variables

rc_cmd $1                # run the rc_cmd() function with the given action
(compare this to a SysV init script)

As seen before, enabling a daemon is done by adding “daemon_flags=” to /etc/rc.conf.local. However, this 
only works for base system daemons because /etc/rc has no knowledge of external packages rc.d scripts (it 
only sequentially runs the enabled base daemon scripts). To cope with this, a new variable was introduced: 
“pkg_scripts”. Any daemon listed in this variable will be started in the provided order.

Four variables can modify the behavior of an rc.d script:

Variable Purpose Default

daemon_class BSD login class the daemon will run under (resource limits...) daemon

daemon_flags flags passed to the daemon <empty>

daemon_timeout maximum time in seconds to stop/reload a daemon 30

daemon_user user the daemon will run as (i.e. target user for su) root

These defaults can be overridden by the rc.d script itself, /etc/rc.conf (operating system defaults) or by 
editing /etc/rc.conf.local.

OpenBSD rc.d(8) Jan 19, 2016 - 19:29 5



OpenBSD rc.d(8)

When rc.conf or rc.conf.local is used to modify these variables, the rc.d script name is substituted to 
“daemon” in the variable name.
For example, the defaults flags for the netsnmpd daemon are set by its rc.d script as follow:
daemon_flags="-u _netsnmp -I -ipv6"
If we wanted to drop IPv6 support and log addresses, we would add the following to rc.conf.local:
netsnmpd_flags=-u _ netsnmp -a

“daemon_class” is particular in that regard and is not configured using rc.conf but is instead automatically 
set to a login class of the same name as the rc.d script if it exists in login.conf(5). It is a simple way to change
the nice(1)ness, the environment, the limits... of a daemon without the need to re-implement anything.
For example, if we wanted to modify the netsnmpd daemon login class to give if it more open file 
descriptors per process, we would add the following to /etc/login.conf:
netsnmpd:\

:openfiles-cur=512:\
:tc=daemon:

Here's a typical /etc/rc.conf.local example:
apmd_flags=-A
hotplugd_flags=
saned_flags=-s128
pkg_scripts=messagebus saned cupsd

Special cases
There are a couple of special cases that can be handled as follow:

• meta rc.d script: regular shell script under /etc/rc.d whose only job is to run several regular rc.d 
scripts with the given action in a specific order (e.g. /etc/rc.d/samba will run /etc/rc.d/smdb and 
/etc/rc.d/nmbd)

• multiple instances of the same daemon: in most cases, this can be done by linking to the original 
rc.d script using another name (e.g. ln -f /etc/rc.d/sshd /etc/rc.d/sshd2) and using the new 
name in rc.conf.local to set up specific flags; this requires the pexp variable to be set in such a way 
that only the corresponding daemon instance is matched

Internals

The whole framework is defined under /etc/rc.d/rc.subr. It's the entry point and is sourced by rc.d scripts to 
get the necessary functions and default variables.

All standard functions that come by default can be overridden by the rc.d script that is being run. They must
only return true(1) or false(1).

Some daemons do not support a particular function in which case the rc.d script will override and disable it 
by having the function name variable set to “NO”. For example if a daemon cannot reload itself, the rc.d 
script will contain:
rc_reload=NO

rc_start()
This function is responsible for starting a daemon, it defaults to:
${rcexec} "${daemon} ${daemon_flags} ${_bg}"

OpenBSD rc.d(8) Jan 19, 2016 - 19:29 6



OpenBSD rc.d(8)

“rcexec” is set by rc.subr as follow:
rcexec="su -l -c ${daemon_class} -s /bin/sh ${daemon_user} -c"

If the “rc_bg” variable is set to “YES” by the rc.d script, rc.subr will set “_ bg” to “&” to start the daemon 
into the background. It is used in case a program can no daemonize on its own (daemontools style).

As an example, this is how the SSH secure shell daemon sshd(8) would end up being started by the rc.d 
framework:
su -l -c daemon -s /bin/sh root -c /usr/sbin/sshd

rc_stop()
This function is responsible for stopping a daemon, it defaults to:
pkill -xf "${pexp}"

“pexp” can be overridden by the rc.d script and defaults to:
pexp="${daemon}${daemon_flags:+ ${daemon_flags}}"
It must match the process we want to kill and can be a POSIX regular expression.

rc_reload()
This function is responsible for reloading a daemon, it defaults to:
pkill -HUP -xf "${pexp}"

By reloading, we mean that the daemon is able to re-read its configuration without the need to be fully 
restarted.

rc_check()
This function is responsible for checking whether a daemon is running or not, it defaults to:
pgrep -q -xf "${pexp}"

A return code of 0 (“true”) means the daemon is running.

rc_cmd()
This is the main function and is the last command called by an rc.d script. It takes one of the 5 arguments 
described below.

• start – if the daemon is enabled, check that it is not already running then run rc_pre() (see below) 
and if successful, run rc_start() then wait up to ${daemon_timeout} seconds for the process to start

• stop – check that the daemon is running then run rc_stop(), wait up to ${daemon_timeout} seconds
for the process to end then run  rc_post() (see below)

• restart – run “/etc/rc.d/daemon stop“ then if successful “/etc/rc.d/daemon start“
• reload – check that the daemon is running then run rc_reload()
• check – run rc_check()

Misc functions and variables
As seen above, the start action will invoke rc_pre() before starting a daemon. This is used when a software 
has pre-launch time requirements. A typical use case for this is creating a directory in which the user the 
daemon is running as can write a socket file, a PID file...

The rc_post() action is invoked after a daemon process has been killed by rc_stop(). This is typically used to 

OpenBSD rc.d(8) Jan 19, 2016 - 19:29 7



OpenBSD rc.d(8)

remove dangling lock files or putting the system back into a pristine state in case a daemon makes intrusive 
modifications.

Some daemons have a specific rc_check() function defined in their script which may require running some 
helper as a specific user. In this situation, a regular unprivileged user will not be able to check whether a 
daemon is running. To cope with this situation, the “rc_usercheck” variable is set to “NO” to warn the user 
that root access is needed to run this action.

The only mandatory variable of an rc.d script is “daemon”. It defines the path to the executable that the 
script will run. In case a program needs a switch to daemonize, it is considered best practice to append it to 
this variable to prevent users from removing it when they want to override daemon_flags.

e.g. smbd(8) from SAMBA (provides SMB/CIFS services to clients)
$ grep ^daemon /etc/rc.d/smbd                                  
daemon="/usr/local/sbin/smbd -D"

Modifications to /etc/rc
The amount of modifications needed to plug the rc.d framework into rc ended up being relatively small.

For base system daemons, /etc/rc will run the start_daemon() function using the daemon rc.d script name. 
If “daemon_flags” is not set to anything but “NO”, then the daemon will be started.
start_daemon() {
        local _daemon

        for _daemon; do
                eval "_do=\${${_daemon}_flags}"
                [[ $_do != NO ]] && /etc/rc.d/${_daemon} start
        done
}

e.g.
start_daemon mountd nfsd lockd statd amd

To be able to get the actual “daemon_flags”, we need to source /etc/rc.d/rc.subr but are interested only by 
the internal functions it provides (i.e. “FUNCS_ONLY”) to be able to parse the rc configuration. The other 
rc.subr functionality is only relevant to the rc.d scripts themselves.
FUNCS_ONLY=1 . /etc/rc.d/rc.subr
_rc_parse_conf

At shutdown time, we only stop the daemons installed from external packages (ports) in the reverse order 
that they are listed in “pkg_scripts”. The reason we are not shutting down base daemons is that they all 
properly shutdown when receiving a SIGTERM and their ordering does not matter.

OpenBSD rc.d(8) Jan 19, 2016 - 19:29 8



OpenBSD rc.d(8)

if [[ $1 == shutdown ]]; then
        <SNIP>
                pkg_scripts=${pkg_scripts%%*( )}
                if [[ -n $pkg_scripts ]]; then
                        echo -n 'stopping package daemons:'
                        while [[ -n $pkg_scripts ]]; do
                                _d=${pkg_scripts##* }
                                pkg_scripts=${pkg_scripts%%*( )$_d}
                                [[ -x /etc/rc.d/$_d ]] && /etc/rc.d/$_d stop
                        done
                        echo '.'
                fi
        <SNIP>
fi

Starting daemons installed from packages is done by iterating the pkg_scripts variable 
from /etc/rc.conf.local and running the corresponding rc.d script in the given order.
# Run rc.d(8) scripts from packages.
if [[ -n $pkg_scripts ]]; then
        echo -n 'starting package daemons:'
        for _daemon in $pkg_scripts; do
                if [[ -x /etc/rc.d/$_daemon ]]; then
                        start_daemon $_daemon
                else
                        echo -n " ${_daemon}(absent)"
                fi
        done
        echo '.'
fi

A few dozen lines got removed when moving away from old constructs like:
if [ X"${ntpd_flags}" != X"NO" ]; then
        echo -n ' ntpd'; ntpd $ntpd_flags
fi
to:
start_daemon ntpd

That was the extent of the modifications required to plug-in our new rc.d system.

rcctl

While having a generic framework opened the door to new possibilities like having monitoring tools or 
configuration managements systems easily interact with daemons, one thing was still missing to make 
automation software happy: being able to enable and disable daemons as well as passing options. So we 
needed an rc.conf.local “editor”.

That's the reason rcctl(8) was born.

$ rcctl                             
usage:  rcctl get|getdef|set service | daemon [variable [arguments]]
            rcctl [-df] action daemon ...
            rcctl disable|enable|order [daemon ...]
            rcctl ls lsarg

OpenBSD rc.d(8) Jan 19, 2016 - 19:29 9



OpenBSD rc.d(8)

rcctl(8) can configure and control daemons and services (add/remove/modify /etc/rc.conf.local variables), 
interact with them (by running their rc.d script) or display information about them. Feature wise it is kind of 
a merge between the service(8) and chkconfig(8) utilities and a sysconfig editor as found in Red Hat.

rcctl was developed to abstract all specific cases (daemon versus service, regular versus meta script...) and 
to present a unified interface to the user.

One particular issue that came to our attention while developing rcctl was the need to source rc.conf, 
rc.conf.local and the rc.d script to get the current and/or default values. Considering the fact that an rc.d 
script also sources /etc/rc.d/rc.subr, the picture suddenly looked very fragile. Multiple sourcing of shell 
scripts coupled with a shell utility that would modify a system critical configuration made us re-think the 
way we should do things. That was especially true since at that time users would abuse rc.conf.local by 
inserting shell code. Since rc.conf and rc.conf.local are in fact configuration files, we decided they should be 
treated as such and be parsed instead of sourced. That would also prevent a typo or some shell code in one 
of these files to corrupt the start-up sequence.
An _rc_parse_conf() function was implemented with a white-list of authorized variables so that only these 
would be evaluated and anything else would end up being ignored. 

Below are few sample usage case samples of rcctl.

Enable the NTP daemon
# rcctl enable ntpd

Start the NTP daemon
# rcctl start ntpd
ntpd(ok)

Enable the TFTP daemon with specific flags
# rcctl enable tftpd flags /path/to/tftpboot

Change the shutdown timeout for SQUID
# rcctl set squid timeout 60

Get and change the ordering of the package rc.d scripts sequence
# rcctl order
cupsd cups_browsed messagebus avahi_daemon gdm
# rcctl order messagebus avahi_daemon cupsd cups_browsed gdm

Check if we have daemons that are supposed to run (enabled) but aren't
# rcctl enable sshd
# rcctl stop sshd
# rcctl ls faulty
sshd

Get APM daemon flags
# rcctl get apmd flags
-A

Mixing the use rcctl(8) with manual edition of /etc/rc.conf.local is perfectly supported, it is not one or the 
other. Eventually, support was added in Puppet, SaltStack and Ansible, allowing to replace some wonky 

OpenBSD rc.d(8) Jan 19, 2016 - 19:29 10



OpenBSD rc.d(8)

code and make OpenBSD become a first class citizen within automated infrastructures.

Conclusion

The aim of the rc.d system on OpenBSD is to provide a simple way to control daemons while keeping the 
original paradigm intact. It is a compromise between features, ease-of-use and simplicity. The addition of 
rcctl also gave us a unified interface to the rc framework. It is by no mean a complete replacement of the 
traditional BSD initialization sequence, a process control framework nor a service supervisor. 

While somewhat analogous to a SysV init, we prevented the unmaintainable bloat which in our opinion was 
its main flaw (how many people really use the non-default runlevels in practice?) and not the fact that it's 
old and in shell.

Our rc.d does come with a few obvious deficiencies like not being able to always match a specific daemon 
when several occurrences are running (due to its process list being too generic, e.g. with a privilege 
separated daemon: “syslogd: [priv]”)... but dealing with these deficiencies would have meant coming up 
with something much more complex. Handling elaborate applications stacks is often better done on a case 
by case basis by using external helpers run from rc.local and rc.shutdown rather than bloating the rc.d 
framework.
This is mostly due to using only shell code in the framework. That said, regular Bourne shell is easy to read 
and write and still provides us with a lot of features allowing to replace code instead of adding some.

By its nature rc.d may not be suitable for all possible uses but no promises were made that couldn't be kept.

Links

• http://cvsweb.openbsd.org/cgi-bin/cvsweb/src/etc/rc
• http://cvsweb.openbsd.org/cgi-bin/cvsweb/src/etc/rc.d/rc.subr
• http://cvsweb.openbsd.org/cgi-bin/cvsweb/src/usr.sbin/rcctl/rcctl.sh
• http://cvsweb.openbsd.org/cgi-bin/cvsweb/ports/infrastructure/templates/rc.template

OpenBSD rc.d(8) Jan 19, 2016 - 19:29 11

http://cvsweb.openbsd.org/cgi-bin/cvsweb/ports/infrastructure/templates/rc.template
http://cvsweb.openbsd.org/cgi-bin/cvsweb/src/usr.sbin/rcctl/rcctl.sh
http://cvsweb.openbsd.org/cgi-bin/cvsweb/src/etc/rc.d/rc.subr
http://cvsweb.openbsd.org/cgi-bin/cvsweb/src/etc/rc

