

Embedded FreeBSD Development
and Package Building

Via QEMU

Sean Bruno, sbruno@FreeBSD.org

Stacey Son, sson@FreeBSD.org

Overview

● Significant Events in the History of Emulation

● A Very Brief Introduction to QEMU

● QEMU User-Mode Emulation

● Misc Binary Image Activator

● Cross Development using QEMU

● Poudriere Bulk Cross Building (Demo)

● Current State and Future

● Credits and Q&A

 Significant Events in the
 History of Emulation

● Theory: Universal Turing
Machine (1936)

● Cross Development:
Gates/Allen's Altair 8800
Emulator (1975)

● Transparent: Apple's (or
Transitive's) Rosetta (2006)
and 68k emulator (1994)

 Significant Events in the
 History of Emulation

● Theory: Universal Turing
Machine (1936)

● Cross Development:
Gates/Allen's Altair 8800
Emulator (1975)

● Transparent: Apple's (or
Transitive's) Rosetta (2006)
and 68k emulator (1994)

 Significant Events in the
 History of Emulation

● Theory: Universal Turing
Machine (1936)

● Cross Development:
Gates/Allen's Altair 8800
Emulator (1975)

● Transparent: Apple's
(or Transitive's)
Rosetta (2006) and 68k
emulator (1994)

Intro to QEMU

● QEMU = Quick EMUlator

● Fast, flexible, open source hardware emulator

● Has played a quiet but essential role in many other
projects, including :

– KVM

– Xen

– VirtualBox (forked version)

– Android SDK (forked version)
● In fact, a lot of embedded SDK's

QEMU's History

● Started by Fabrice Bellard in 2003

– FFMPEG, TinyCC, TinyGL, JSLinux, etc.

QEMU's History

● Started by Fabrice Bellard in 2003

– FFMPEG, TCC (and OTCC), JSLinux, etc.
● Initially a portable JIT translation engine for cross

architecture emulation (aka. User Mode Emulation)

QEMU's History

● Started by Fabrice Bellard in 2003

– FFMPEG, TCC (and OTCC), JSLinux, etc.
● Initially portable JIT translation engine for cross

architecture emulation (aka. User Mode Emulation)

● Emulation of PC hardware added
(aka. System Mode Emulation)

QEMU's History

● Started by Fabrice Bellard in 2003

– FFMPEG, TCC (and OTCC), JSLinux, etc.
● Initially portable JIT translation engine for cross

architecture emulation (aka. User Mode Emulation)

● Emulation of PC hardware added
(aka. System Mode Emulation)

● Virtualization, Management API, Block Layer, etc.

QEMU's History

QEMU's History

 QEMU User Mode Emulation

● Only CPU is emulated.
MMU, I/O, etc. are not.

● System calls are
translated to host calls
and/or emulated.

● Can use native host tools
for cross development.
Cross debugging and
testing.

 QEMU User Mode Emulation

● Only CPU is emulated.
MMU, I/O, etc. are not.

● System calls are
translated to host calls
and/or emulated.

● Can use native host tools
for cross development.
Cross debugging and
testing.

(More on this
in a minute...)

 QEMU User Mode Emulation

● Only CPU is emulated.
MMU, I/O, etc. are not.

● System calls are trans-
lated to host calls and/or
emulated.

● Can use native host tools
for cross development.
Cross debugging and
testing.

(Remember
these guys?)

 System Call Argument
Translation

Target(mips) Host(amd64)

● Endian :

– Byte Swap Arguments

 System Call Argument
Translation

Target(mips) Host(amd64)

● Endian :

– Byte Swap Args
● Word Size :

– 32-bit to 64-bit conversion

 System Call Argument
Translation

Target(mips) Host(amd64)
● Endian :

– Byte Swap Args
● Word Size :

– 32-bit to 64-bit conversion
● ABI Differences :

– e.g. 64-bit arg passed in two
evenly aligned 32-bit registers

– Repackage 32-bit registers
into a 64-bit argument

 System Call Argument
Translation

Target(mips) Host(amd64)

● Pointers:

– Strings (No Problem)

– Arrays (Byte Swap, 32to64
depending on element type)

– Structures (Byte Swap,
32to64 depending on
elements types, offsets)

– Temporary buffer
management and locking

Problem System Calls

● mmap() and friends

● Signals related calls

● fork(), threads and _umtx_op()

● ioctl() and sysctl()

● sysarch() - ${ARCH} dependent syscalls.

● Other misc calls (most of which we simply
don't support but don't need).

mmap()

● Target code and QEMU
use the same address
space.

● Target MAP_FIXED
mappings that conflict
with the QEMU host's
mappings are mapped
elsewhere but then fixed
it in the emulation.

● QEMU keeps a table of
all the host mappings.

Host Mapping

Target Mapping

Host Mapping

Target: mmap(,MAP_FIXED)

QEMU Offsets!!!

Host Mapping

Target Mapping

Host Mapping

QEMU Offsets

Target Mapping

Signal Handling

● Target signals are mostly muxed with host signals.
● Target signals are queued and then dispatched out the main loop.

● Therefore, the emulation of the basic block has to finish before target
gets the signal.

Threads and _umtx_op()

● Threads are mapped to pthreads one-to-one.

● The undocumented _umtx_op() system call supports
many operations or commands that embedded flags
into the same field as counters/semaphores.

e.g. UMTX_OP_SEM2_WAIT, the high order bit of
semaphore is a 'has waiters' flag. The kernel ends
up checking or flipping the wrong bit when the host
and target are different endian. Currently, we do
user level emulation of these => Slow/Ugly

Solution? (Maybe add other endian versions of these
calls.)

ioctl() Thunking

● Ioctl() and sysctl() are used and abused for passing
large amounts of data in and out of the kernel.

● Thunking – A generic way using macros to convert
data flowing in and out with the ioctl() system call to
save LOC. e.g...

IOCTL(TIOCFLUSH, IOC_W, MK_PTR(TYPE_INT))

IOCTL(TIOCGWINSZ, IOC_R,
MK_PTR(MK_STRUCT(STRUCT_winsize)))

● Thunking should also be used for sysctl() but it's not (yet).

● Many ioctl()'s and sysctl()'s are not supported.

Sysarch() and Others

● sysarch() is emulated. Mainly for thread local storage, etc.

● Other system calls that are missing :

– Jail related system calls.

– Mandatory Access Control or mac(3) calls.

– kld(4) related calls.

– Capsicum(4) related calls.

– Exotic networking: e.g. sctp(4) and some socket options.

– sendfile(2), ptrace(2), and utrace(2).

– Some misc others.

Adding a New Arch to
 QEMU BSD User-Mode (1/2)

● https://github.com/seanbruno/qemu-bsd-user/ (bsd-user branch)
● Arch dependent code : bsd-user/${arch}

_cpu_init() - CPU startup initialization

_cpu_loop() - CPU exception decoding/dispatching

cpu{get, set}_tls() - Get/Set TLS in CPU state

_cpu_fork() - CPU state initialization for child after fork()

{get, set}_mcontext() - Get/Set machine context/ucontext

_thread_init() - First thread initialization after loading image

_thread_set_upcall() - New thread CPU state initialization

https://github.com/seanbruno/qemu-bsd-user/

Adding a New Arch to
 QEMU BSD User-Mode (2/2)

set_sigtramp_args() - Set up the signal trampoline
arguments in the QEMU CPU state

get_ucontext_sigreturn() - Get the user context for
sigreturn()

setup_sigtramp() - Customize/Copy the signal
trampoline code into the target memory space.

_arch_sysarch() - sysarch() syscall emulation

get_sp_from_cpustate() - Get the stack pointer

set_second_rval() - Set the second return value

 Misc Binary Image Activator

● 'imgact_binmisc.ko' is a kernel image activator
that will invoke an user-level emulator or
interpreter based the binary header of the file.

● binmiscctl(8) is a command-line utility that is
used to load the kernel module (if not already
loaded) and configure the interpreter/emulator
path for a set of magic bytes and mask.

● Part of FreeBSD since 10.1.

x86 Host

imgact_binmisc Kernel
Module

a.out --arg

ARM Binary

/usr/bin/qemu-arm a.out --arg

Binmiscctl(8) Examples

● LLVM bitcode interpreter ('lli') :

● QEMU MIPS64 emulator ('qemu-mips64') :

● See binmiscctl(8) for additional examples.

binmiscctl add llvmbc --interpreter “/usr/bin/lli
--fake-arg0=#a” --magic “BC\xc0\xde” --size 4
--offset 0 --set-enabled

binmiscctl add mips64elf --interpreter
“/usr/bin/qemu-mips64” --magic
“\x7f\x45\x4c\x46\x02\x02\x01\x00[...]” --mask
“\xff\xff\xff\xff\xff\xff\xff\x00[...]” --size 20

Cross Development
using QEMU

● Cross Debugging, using QEMU's gdb server :

% qemu-arm -g 4567 a.out

- Using cross gdb in second terminal :
% cross-gdb a.out

(gdb) target remote 127.1:4567

- Using lldb* in second terminal :
% lldb a.out

(lldb) gdb-remote 4567

● QEMU currently doesn't create target cores.

– It only dumps the core image of the emulator.

 Binary Packages for my RPi ?

● Goal: Binary FreeBSD Packages for Tier 2 Architectures

● Number of Raspberry Pi's sold (as of 2/15)... > 5 Million !

● OK, my Raspberry Pi is running FreeBSD. Now what?

"FreeBSD - Helping kids get a better OS!"

Cross Building Packages
for Tier 2 Arch's

Solutions :
● Ideally, cross building should be easy (e.g. 'make

crossbuild')

– Autotools, cmake, /usr/share/mk/*, etc. are somewhat
friendly for this.

– Others not so friendly.*

● Hardware (or full emulation), distcc, and NFS
● QEMU user-mode

* See Baptiste's EuroBSD 2014 Talk for Details :
http://www.slideshare.net/eurobsdcon/baptiste-daroussin-crosscompiling-ports

 Building Packages with
 Large Amounts of Hardware

● Stacks of Embedded
System Boards, distcc, NFS

– Limited Memory

– Switch Ports/Console and
Power Management ($$$)

– Not Rack Friendly

● Target $$$erver $$$olutions

– e.g. Calxeda/SLS ECX-1000
($20K USD)

Cross Building with
QEMU User-Mode

● Create a jail image (w/ 'qemu-static-user' port):

● Mount devfs and nullfs for ports :

● Chroot and Enjoy :

poudriere jail -c -j 11armv632 -m svn -v head -a arm armv6 -x
-or-
poudriere jail -c -j 11mips32 -m svn -v head -a mips mips -x
-or-
poudirere jail -c -j 11mips64 -m svn -v head -a mips mips64 -x
-and add something to build-
poudriere ports -c -m svn

mount -t devfs devfs <path_to_jail>/dev
mount -t nullfs /usr/local/poudriere/ports/default
<path_to_jail>/usr/ports

chroot /usr/local/poudriere/jails/11armv632
uname -p
armv6

Using a Cross Build
Toolchain with QEMU

● Make a cross build toolchain (i.e. 'make xdev') and install into
jail. With imgact_binmisc it just works.

The 'cd /usr/ports/editors/vim-lite && make' Benchmark :

5.2x faster than
Pure QEMU3.8x faster than

QEMU and XDEV

● Replacing things like /bin/sh with host native versions further
benefits performance.

Poudriere Bulk

Using the tools you already know

Userland Components

● Poudriere is the easiest way to get started
● Knows how to to understand binmiscctl(8)
● Knows to copy QEMU into jails
● Creates clean backup, in case of accident
● Use ZFS, save yourself some pain

Current State of
QEMU Cross Building

● The ports cluster is building packages for arm,
mips, and mips64. Nearly 50,000 packages!

– Over 20,000 for arm, 15,000 for mips and 12,000
for mips64. (All coming to a pkg.FreeBSD.org near
you.)

● Aarch64/ARM64 support is mostly there

– Have cross built a handful of packages (e.g. vim-
lite)

– Missing some threading/_umtx_op() stuff, etc.

● QEMU- Sparc64 and PPC will run simple
static binaries.

Future

● Cross build (most) ports without QEMU. Only
use QEMU with that doesn't work (as 'plan b')

● Build more arm, mips, and mips64 packages

– Toolchain, bug fixes, etc.

● Start building Aarch64/arm64 packages

● Better cross debugger support and add target
core file generation

● Support for PPC

Credits

● Stacey Son – binmiscctl(8)/imgact_binmisc(4) and QEMU user-
mode for FreeBSD.

● Juergen Lock – QEMU ports maintainer and patch contributor.
● Ed Maste – QEMU patch contributor and cat herder.
● Peter Wemm – Sigtramp patch.
● Alexander Kabaev – QEMU patch contributor.
● Adrian Chadd – For ignoring Sean's pleading for help with

kern_imgact.c.
● Baptiste Daroussin – Poudriere and inflicting Sean with a ports

commit bit.
● Bryan Drewery – Poudriere and support.

Credits Continued

● Dimitry Andric – Clang Help and Updates
● Andrew Turner – Arm GCC and Ports Patches
● Mikael Urankar – Mysql Patches
● Warner Losh – Created the native-xtools target
● Ian Lapore – ARMv6 Assembly Help
● Brook Davis – Inspiration and initial guidance
● Sean Bruno – The master electrician that wired all this together and

got it working
● U.S. Taxpayers – For funding some of this work*

 * Defense Advanced Research Projects Agency (DARPA) and the Air Force Research Laboratory (AFRL), under
contract FA8750-10-C-0237.

Q & A

QEMU BSD User-Mode Src: https://github.com/seanbruno/qemu-bsd-user/tree/bsd-user

QEMU User-Mode HowTo: https://wiki.freebsd.org/QemuUserModeHowTo

Sean's Blog: http://blog.ignoranthack.me

Email: {sbruno, sson}@FreeBSD.org

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44

