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Overview

● Significant Events in the History of Emulation

● A Very Brief Introduction to QEMU

● QEMU User-Mode Emulation

● Misc Binary Image Activator

● Cross Development using QEMU

● Poudriere Bulk Cross Building (Demo)

● Current State and Future

● Credits and Q&A



  

      Significant Events in the
       History of Emulation

● Theory: Universal Turing 
Machine (1936)

● Cross Development: 
Gates/Allen's Altair 8800 
Emulator (1975)

● Transparent: Apple's (or 
Transitive's) Rosetta (2006) 
and 68k emulator (1994)
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Intro to QEMU

● QEMU = Quick EMUlator 

● Fast, flexible, open source hardware emulator

● Has played a quiet but essential role in many other 
projects, including :

– KVM

– Xen

– VirtualBox (forked version)

– Android SDK (forked version)
● In fact, a lot of embedded SDK's



  

QEMU's History

● Started by Fabrice Bellard in 2003

– FFMPEG, TinyCC, TinyGL, JSLinux, etc.
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– FFMPEG, TCC (and OTCC), JSLinux, etc.
● Initially portable JIT translation engine for cross 

architecture emulation (aka. User Mode Emulation)

● Emulation of PC hardware added                         
(aka. System Mode Emulation)

● Virtualization, Management API, Block Layer, etc.
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       QEMU User Mode Emulation

● Only CPU is emulated. 
MMU, I/O, etc. are not.

● System calls are 
translated to host calls 
and/or emulated.

● Can use native host tools 
for cross development. 
Cross debugging and 
testing.
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       QEMU User Mode Emulation

● Only CPU is emulated. 
MMU, I/O, etc. are not.

● System calls are trans- 
lated to host calls and/or 
emulated.

● Can use native host tools 
for cross development. 
Cross debugging and 
testing.

(Remember
these guys?)
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Target(mips)        Host(amd64)

● Endian :

– Byte Swap Arguments
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      System Call Argument 
Translation

Target(mips)         Host(amd64)
● Endian :

– Byte Swap Args
● Word Size :

– 32-bit to 64-bit conversion
● ABI Differences :

– e.g. 64-bit arg passed in two 
evenly aligned 32-bit registers

– Repackage 32-bit registers 
into a 64-bit argument



  

      System Call Argument 
Translation

Target(mips)         Host(amd64)

● Pointers:

– Strings (No Problem)

– Arrays (Byte Swap, 32to64 
depending on element type)

– Structures (Byte Swap, 
32to64 depending on 
elements types, offsets)

– Temporary buffer 
management and locking



  

Problem System Calls

● mmap() and friends

● Signals related calls

● fork(), threads and _umtx_op()

● ioctl() and sysctl()

● sysarch()  - ${ARCH} dependent syscalls.

● Other misc calls (most of which we simply 
don't support but don't need).



  

mmap()

● Target code and QEMU 
use the same address 
space.

● Target MAP_FIXED 
mappings that conflict 
with the QEMU host's 
mappings are mapped 
elsewhere but then fixed 
it in the emulation.

● QEMU keeps a table of 
all the host mappings. 

Host Mapping

Target Mapping

Host Mapping

Target: mmap(,MAP_FIXED)

QEMU Offsets!!!

Host Mapping

Target Mapping

Host Mapping

QEMU Offsets

Target Mapping



  

Signal Handling

● Target signals are mostly muxed with host signals.
● Target signals are queued and then dispatched out the main loop.

● Therefore, the emulation of the basic block has to finish before target 
gets the signal.



  

Threads and _umtx_op()

● Threads are mapped to pthreads one-to-one.

● The undocumented _umtx_op() system call supports 
many operations or commands that embedded flags 
into the same field as counters/semaphores.  

e.g.  UMTX_OP_SEM2_WAIT, the high order bit of 
semaphore is a 'has waiters' flag.  The kernel ends 
up checking or flipping the wrong bit when the host 
and target are different endian.  Currently, we do 
user level emulation of these => Slow/Ugly

Solution?  (Maybe add other endian versions of these 
calls.)  



  

ioctl() Thunking

● Ioctl() and sysctl() are used and abused for passing 
large amounts of data in and out of the kernel.

● Thunking – A generic way using macros to convert 
data flowing in and out with the ioctl() system call to 
save LOC.   e.g...

IOCTL(TIOCFLUSH, IOC_W, MK_PTR(TYPE_INT))

IOCTL(TIOCGWINSZ, IOC_R, 
MK_PTR(MK_STRUCT(STRUCT_winsize)))

● Thunking should also be used for sysctl() but it's not (yet).

● Many ioctl()'s and sysctl()'s are not supported.



  

Sysarch() and Others

● sysarch() is emulated.  Mainly for thread local storage, etc.

● Other system calls that are missing :

– Jail related system calls.

– Mandatory Access Control or mac(3) calls.

– kld(4) related calls.

– Capsicum(4) related calls.

– Exotic networking: e.g. sctp(4) and some socket options.

– sendfile(2), ptrace(2), and utrace(2).

– Some misc others.



  

Adding a New Arch to
     QEMU BSD User-Mode (1/2)

● https://github.com/seanbruno/qemu-bsd-user/  (bsd-user branch)
● Arch dependent code : bsd-user/${arch}

_cpu_init() - CPU startup initialization

_cpu_loop() - CPU exception decoding/dispatching

_cpu_{get, set}_tls()  - Get/Set TLS in CPU state

_cpu_fork() - CPU state initialization for child after fork()

{get, set}_mcontext() - Get/Set machine context/ucontext

_thread_init() - First thread initialization after loading image 

_thread_set_upcall() - New thread CPU state initialization

https://github.com/seanbruno/qemu-bsd-user/


  

Adding a New Arch to
    QEMU BSD User-Mode (2/2)

set_sigtramp_args() - Set up the signal trampoline 
arguments in the QEMU CPU state

get_ucontext_sigreturn() - Get the user context for 
sigreturn()

setup_sigtramp() - Customize/Copy the signal 
trampoline code into the target memory space.

_arch_sysarch() - sysarch() syscall emulation

get_sp_from_cpustate() - Get the stack pointer

set_second_rval() - Set the second return value



  

       Misc Binary Image Activator

● 'imgact_binmisc.ko' is a kernel image activator 
that will invoke an user-level emulator or 
interpreter based the binary header of the file.

● binmiscctl(8) is a command-line utility that is 
used to load the kernel module (if not already 
loaded) and configure the interpreter/emulator 
path for a set of magic bytes and mask.

● Part of FreeBSD since 10.1.



  

x86 Host

imgact_binmisc Kernel 
Module

a.out --arg

ARM Binary

/usr/bin/qemu-arm a.out --arg



  

Binmiscctl(8) Examples 

● LLVM bitcode interpreter ('lli') :

● QEMU MIPS64 emulator ('qemu-mips64') :

● See binmiscctl(8) for additional examples.

# binmiscctl add llvmbc --interpreter “/usr/bin/lli  
--fake-arg0=#a” --magic “BC\xc0\xde” --size 4 
--offset 0 --set-enabled

# binmiscctl add mips64elf --interpreter 
“/usr/bin/qemu-mips64” --magic 
“\x7f\x45\x4c\x46\x02\x02\x01\x00[...]” --mask 
“\xff\xff\xff\xff\xff\xff\xff\x00[...]” --size 20 



  

Cross Development 
using QEMU

● Cross Debugging, using QEMU's gdb server :

% qemu-arm -g 4567 a.out

- Using cross gdb in second terminal :
% cross-gdb a.out

(gdb) target remote 127.1:4567

- Using lldb* in second terminal :
% lldb a.out

(lldb) gdb-remote 4567

● QEMU currently doesn't create target cores.

– It only dumps the core image of the emulator.



  

        Binary Packages for my RPi ? 

● Goal:  Binary FreeBSD Packages for Tier 2 Architectures

● Number of Raspberry Pi's sold (as of 2/15)... > 5 Million !

● OK, my Raspberry Pi is running FreeBSD.  Now what?

    

"FreeBSD - Helping kids get a better OS!"



  

Cross Building Packages
for Tier 2 Arch's

Solutions :
● Ideally, cross building should be easy (e.g. 'make 

crossbuild')

– Autotools, cmake, /usr/share/mk/*, etc. are somewhat 
friendly for this.

– Others not so friendly.*

● Hardware (or full emulation), distcc, and NFS
● QEMU user-mode

* See Baptiste's EuroBSD 2014 Talk for Details : 
http://www.slideshare.net/eurobsdcon/baptiste-daroussin-crosscompiling-ports



  

   Building Packages with
   Large Amounts of Hardware

● Stacks of Embedded 
System Boards, distcc, NFS

– Limited Memory

– Switch Ports/Console and 
Power Management ($$$)

– Not Rack Friendly

● Target $$$erver $$$olutions

– e.g. Calxeda/SLS ECX-1000 
($20K USD)



  

Cross Building with
QEMU User-Mode

● Create a jail image (w/ 'qemu-static-user' port):

● Mount devfs and nullfs for ports :

● Chroot and Enjoy :

# poudriere jail -c -j 11armv632 -m svn -v head -a arm armv6 -x
-or-
# poudriere jail -c -j 11mips32 -m svn -v head -a mips mips -x
-or-
# poudirere jail -c -j 11mips64 -m svn -v head -a mips mips64 -x
-and add something to build-
# poudriere ports -c -m svn

# mount -t devfs devfs <path_to_jail>/dev
# mount -t nullfs /usr/local/poudriere/ports/default 
<path_to_jail>/usr/ports

# chroot /usr/local/poudriere/jails/11armv632
# uname -p
armv6



  

Using a Cross Build
Toolchain with QEMU

● Make a cross build toolchain (i.e. 'make xdev') and install into 
jail.  With imgact_binmisc it just works.

The 'cd /usr/ports/editors/vim-lite && make' Benchmark :

5.2x faster than
Pure QEMU3.8x faster than

QEMU and XDEV

● Replacing things like /bin/sh with host native versions further 
benefits performance.



  

Poudriere Bulk

Using the tools you already know



  

Userland Components

● Poudriere is the easiest way to get started
● Knows how to to understand binmiscctl(8)
● Knows to copy QEMU into jails
● Creates clean backup, in case of accident
● Use ZFS, save yourself some pain



  

Current State of
QEMU Cross Building

● The ports cluster is building packages for arm, 
mips, and mips64.  Nearly 50,000 packages!

– Over 20,000 for arm, 15,000 for mips and 12,000 
for mips64. (All coming to a pkg.FreeBSD.org near 
you.)

● Aarch64/ARM64 support is mostly there  

– Have cross built a handful of packages (e.g. vim-
lite)

– Missing some threading/_umtx_op() stuff, etc.

● QEMU- Sparc64 and PPC will run simple 
static binaries.



  

Future

● Cross build (most) ports without QEMU.  Only 
use QEMU with that doesn't work (as 'plan b')

● Build more arm, mips, and mips64 packages

– Toolchain, bug fixes, etc.

● Start building Aarch64/arm64 packages

● Better cross debugger support and add target 
core file generation

● Support for PPC



  

Credits

● Stacey Son – binmiscctl(8)/imgact_binmisc(4) and QEMU user-
mode for FreeBSD.
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● Ed Maste – QEMU patch contributor and cat herder.
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Credits Continued

● Dimitry Andric – Clang Help and Updates
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 * Defense Advanced Research Projects Agency (DARPA) and the Air Force Research Laboratory (AFRL), under 
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Q & A

QEMU BSD User-Mode Src: https://github.com/seanbruno/qemu-bsd-user/tree/bsd-user

QEMU User-Mode HowTo: https://wiki.freebsd.org/QemuUserModeHowTo

Sean's Blog: http://blog.ignoranthack.me    

Email: {sbruno, sson}@FreeBSD.org
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