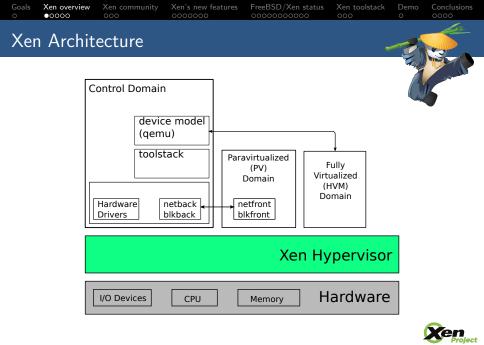
Taking the red pill

Charting the rabbit hole to improve FreeBSD performance on Xen

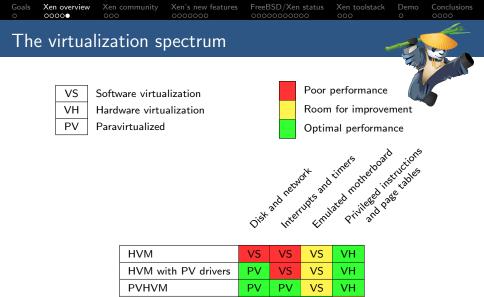
Roger Pau Monné

Ottawa - May 17, 2014



- Description of Xen.
- Understanding how the Xen community works.
- A peek into Xen's new features.
- Recent work done in FreeBSD to improve Xen support.
- Introduction to the Xen toolstack.
- Demo of a FreeBSD Xen Dom0.

- Designed by:
 - ► XenoServer research project at Cambridge University.
 - ► Intel.
 - Microsoft labs.
- x86 instructions behave differently in kernel or user mode, options for virtualization were full software emulation or binary translation.
 - Design a new interface for virtualization.
 - Allow guests to collaborate in virtualization.
 - Provide new interfaces for virtualized guests that allow to reduce the overhead of virtualization.
- The result of this work is what we know today as paravirtualiztion.


- All this changes lead to the following interfaces being paravirtualized:
 - Disk and network interfaces
 - Interrupts and timers
 - Boot directly in the mode the kernel wishes to run (32 or 64bits)
 - Page tables
 - Privileged instructions

- With the introduction of hardware virtualization extensions Xen is able to run unmodified guests
- This requires emulated devices, which are handled by Qemu
- Makes use of nested page tables when available.
- Allows to use PV interfaces if guest has support for them.

PV

PV

PV

PV

PV

Xen community overview

Xen community

Goals

The Xen Hypervisor was released under the GPL2 on 2003.

FreeBSD/Xen status

- The Xen Project became a Linux Foundation Collaborative Project in 2013.
- Xen governance similar to the Linux kernel.

Xen's new features

- Xen Project teams:
 - Xen Hypervisor.
 - ARM Hypervisor.
 - XAPI.
 - Mirage OS.
 - Linux PVOPS.

Demo

Roles:

- Maintainers: own one or more components in the Xen source tree.
- Committers: maintainers that are allowed to commit changes into the source code repository.
- Sub-projects and teams: run by individuals, projects are related or based on the Xen Project.

See http:

//www.xenproject.org/developers/governance.html
for more information.

Xen Hypervisor

Xen community

000

Goals

- Main project, contains the hypervisor and the toolstack.
- Led by 5 committers; 2 from Citrix, 1 from Suse, 2 Independent.

Xen's new features

 During the 4.4 release cycle the Xen Project had contributions from 81 individuals from 28 organizations, and 19 unaffiliated contributors.

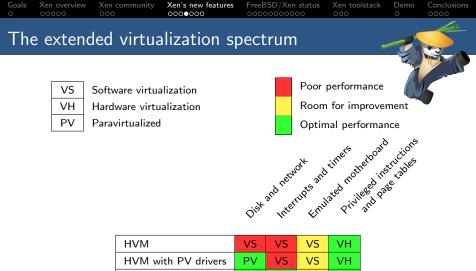
FreeBSD/Xen status

- Organizations that contributed to the 4.4 release: Citrix, SUSE, Linaro, Verizon, Oracle, Intel, Amazon...
- Full list can be found at http://wiki.xen.org/wiki/Xen_ Project_4.4_Acknowledgements.

Demo

Conclusions

- Recent Xen changes:
 - Support for running Xen on ARM.
 - New virtualization mode: PVH.
 - ► As usual, improvements/bugfixes across all components.


- Started on 2011, focused on bringing Xen into ARM boards with virtualization extensions.
- > Xen 4.4 is the recommended release for Xen on ARM.
- ► Has support for both 32 and 64bit ARM chips.
- More information can be found at http://www.xenproject. org/developers/teams/arm-hypervisor.html.

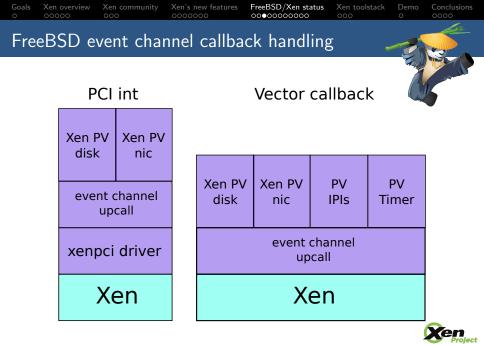
- PV in an HVM container.
- PVH should use the best aspects from both PV and HVM:
 - No need for any emulation.
 - ► Has a "native" MMU from guest point of view.
 - ► Has access to the same protection levels as bare metal.
- Written by Mukesh Rathor @ Oracle.
- Significant revisions by George Dunlap @ Citrix.

VH
VH
PV

- ► No PV MMU.
- ► Runs with normal privilege levels.
- Disable HVM emulated devices.
- Uses PV start sequence.
 - Start with basic paging setup.
- Uses the PV path for several operations:
 - vCPU bringup.
 - PV hypercalls.
 - PV e820 memory map.
- Uses the PVHVM callback mechanism.

- Pagetables controlled by guest.
- IDT controlled by guest.
- No pfn/mfn difference, guest only aware of gpfns.
- Native syscall/sysenter.
- No event/failsafe callbacks.
- Native IOPL.

- ▶ Requires Xen ELFNOTES in order to boot.
- Boots with paging enabled.
- Slight differences in the grant-table and xenstore setup.
- ► No emulated devices, so no emulated APIC or timers.

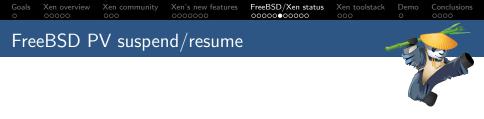

- ▶ i386 PV port.
- HVM with PV drivers (both i386 and amd64).
 - Xenstore and grant-table implementations.
 - Event channel support.
 - ► PV Disk and Network front and backends.
 - Suspend and resume.

- PVHVM.
 - Vector callback support.
 - Unified event channel code with the i386 PV port.
 - ► PV timer.
 - PV IPIs.
 - ► PV Suspend and resume.

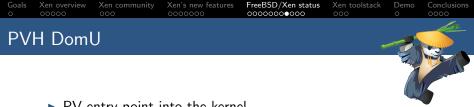
Ottawa - May 17, 2014

Taking the red pill

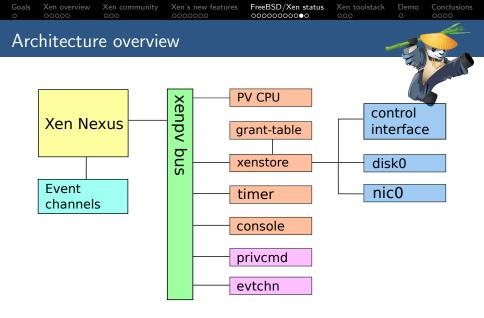
20/36

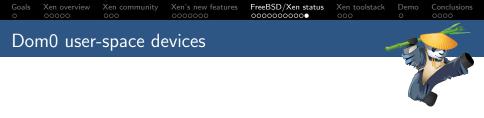

- Provides a singleshot event timer (et) implemented using VCPUOP_set_singleshot_timer.
- Provides a timecounter (tc) using the information provided by Xen in vcpu_time_info.
- Provides a clock using vcpu_time_info (that contains the uptime) and the wallclock time in shared_info.

- On bare metal IPIs are handled/delivered via the local APIC.
- Can route those over event channels, since we can now deliver events to specific vCPUs.
- Removes the emulation overhead of using the LAPIC.


- Rebind all IPI event channels.
- Rebind all VIRQ event channels (for the timer).
- Re-initialize the timer on each vCPU.
- Re-connect the frontends (disk, net).

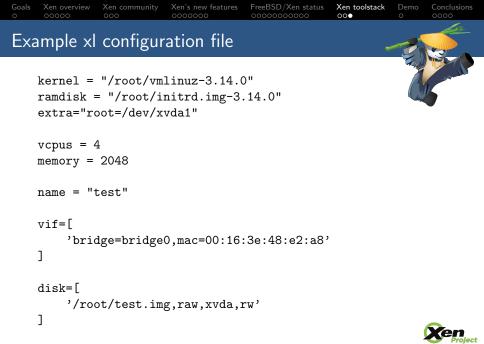
- PVH DomU support.
- PVH Dom0 support.


- PV entry point into the kernel.
- Wire the PV entry point with the rest of the FreeBSD boot sequence.
- Fetch the e820 memory map from Xen.
- PV console
- Get rid of the usage of any previously emulated devices (serial console, timers).
- PV vCPU bringup for APs.
- Hardware description comes from xenstore, not ACPI.



- Builds on top of DomU PVH support.
- Has access to physical hardware devices.
- Parses ACPI tables and notifies Xen about the underlying hardware.
- Special user-space devices are needed, so the toolstack can interact with Xen.

- privcmd:
 - Allows the toolstack to perform hypercalls.
 - Allows mapping memory from foreign domains.
- evtchn:
 - ► Allows registering event channels from user-space applications.
 - ► Allows receiving and sending event channel interrupts.


- Xen used to have two different toolstacks: xm and xl.
- xm deprecated for serveral releases, finally removed in Xen 4.5.
- xl is built on top of libxl (libxenlight), a library to interact with the hypervisor.
- libxl features:
 - libxl provides a stable API.
 - Coded in C (xm was built on python).
 - Small and efficient code-base.
 - libvirt driver built on top of libxl.

- The default toolstack to interact with Xen is xl.
- xl is a cli utility.
- Configurations for VMs stored as plain text files.
- xl provides a set of commands to manage the hypervisor.
- Doesn't do any kind of storage/network management.
- Users that want a more advanced toolstack should use libvirt/CloudStack/OpenStack...

Demo of a FreeBSD PVH Dom0.

Ottawa - May 17, 2014

- Add multiboot support to the FreeBSD bootloader.
- Improve robustness and compatibility of if_xn/xnb (PV nic).
- Add some additional user-space devices to interact with Xen:
 - ▶ gntdev: allows user-space applications to map grants.
 - gntalloc: allows user-space applications to share memory using grants.

- FreeBSD side:
 - Patches for FreeBSD PVH Dom0:
 - http://xenbits.xen.org/gitweb/?p=people/royger/ freebsd.git;a=shortlog;h=refs/heads/pvh_dom0_v4
- Xen side:
 - Patches for the Xen tools:
 - http://xenbits.xen.org/gitweb/?p=people/royger/ xen.git;a=shortlog;h=refs/heads/freebsd_tools_rfc
 - Some already committed upstream.

- ▶ FreeBSD/Xen support is evolving from HVM \rightarrow PVHVM \rightarrow PVH.
- ► FreeBSD PVH Dom0 support in the horizon.
- Using Xen allows to provide a fully featured virtualization platform based on FreeBSD.

Thanks Questions?

Ottawa - May 17, 2014