
An Overview of Security
in the FreeBSD Kernel

Brought to you by

Dr. Marshall Kirk McKusick

2013 BSDCan Conference
May 17, 2013

University of Ottawa
Ottawa, Canada

Copyright 2013 Marshall Kirk McKusick.
All Rights Reserved.

Security Mindset

Security is part of the design, not added later

From its beginningUNIX identified users and
used those identities

• access control to files

• manipulation control of processes

• access control to devices

• limited privilege expansion usingsetuid ()
andsetgid ()

Over time these basic controls have been
refined though still remain intact more than
40 years later

Trusted Computing Base

Set of things that have to be secure for system
to be secure

• Kernel

• Boot scripts

• Core utilities (shell, login, ifconfig, etc)

• Libraries used by core utilities

Solid crypto support

• OpenSSH

• OpenSSL

• IPSEC

• GBDE

• GELI

• Hardware crypto

Overview

Immutable and Append-only Flags

• Tamperproof critical files and logs

Jails

• Lightweight FreeBSD virtual machine

Access control lists (ACL)

• Discretionary access control to files and
directories

Mandatory access control (MAC)

• Systemwide controlled information flow
between files and programs

Privilege

• Subdivision of root privileges

Auditing

• Accountability and intrusion detection

Capsicum

• Sandboxing of process rights

Immutable and Append-only Flags

• Immutable file may not be changed,
moved, or deleted

• Append-only file is immutable except that
it may be appended

• User append-only and immutable flags
may be toggled by owner or root

• Root append-only and immutable flags
may not be cleared when system is secure

• System secure levels:

-1 always insecure (must be compiled
into kernel)

0 insecure mode (normally single user)

1 secure mode (normally multiuser)

2 very secure mode (at system admin
discretion)

• Secure mode prevents writing /dev/kmem,
/dev/mem, and mounted disks

• Very secure mode additionally prevents
writing any disk or rebooting

Immutable Limitations

• Immutable files can only be updated when
system is single-user

• Append-only files can only be rotated when
system is single-user

• Direct hardware access is restricted

• All startup activities must be protected

• Startup scripts and their containing
directories

• All binaries executed during startup

• All libraries used during startup

• Many configuration files used during
startup

Jails

Create a group of processes with their own
root-administered environment

bin lib sbin

vnet1
vem0b

mail

bin jails lib sbin

web

bin dev etc usr sbin var
host root

vem1aem0vem0a
vnet0

vnet2
vem1b

var etc sbin
dev usr bin

bin lib sbin

var etc sbin
dev usr bin

Jail Rules

Permitted

• running or signalling processes within jail

• changes to files within jail

• binding ports to jail’s IP addresses

• accessing raw, div ert, or routing sockets on
jail’s virtual network interfaces

Not permitted

• getting information on processes outside
of the jail

• changing kernel variables

• mounting or unmounting filesystems

• modifying physical network interfaces or
configurations

• rebooting

Access Control Lists

File permission bits

• file permission bits are three entries in the
ACL i tself

• permits full backward compatibility with
historical implementations

ACL capabilities:

• read, write, execute, lookup, and admin
permissions

• list of users each with own permissions

• list of groups each with own permissions

• permissions for all others

Default/inheritable ACL’s that propagate
down the file hierarchy

Tw o user-level commands:

• getfacl - get file ACL permissions

• setfacl - set file ACL permissions

Access Control List Semantics

Support forPOSIX.1e andNFSv4 semantics

• By design,NFSv4 semantics are very
similar to Windows filesystemACL
semantics

• UFS implements bothPOSIX.1e and
NFSv4 semantics (specified at boot time)

• ZFS implements onlyNFSv4 semantics

• NFSv4 uses inheritableACLs rather than
the defaultACL in POSIX.1e

• FreeBSD uses the same command-line
tools andAPIs for bothACL types

Privilege

Each superuser privilege is identified and
treated separately

Nearly 200 defined in/sys/sys/priv.h, some
examples:

• PRIV_ACCT − Manage process
accounting.

• PRIV_MAXPROC − Exceed system
processes limit.

• PRIV_SETDUMPER − Configure dump
device.

• PRIV_REBOOT − Can reboot system.

• PRIV_SWAPON − Add swap space.

• PRIV_MSGBUF − Read kernel message
buffer.

• PRIV_KLD_LOAD − Load a kernel
module.

• PRIV_ADJTIME − Set time adjustment.

• PRIV_SETTIMEOFDAY − Can set time
of day.

• PRIV_VFS_WRITE − Override vnode
write permission.

Priviledge Applied

Privilege checks cover all areas of the system

• network configuration and filtering

• filesystem mounting, unmounting, and
exporting

• accessing or modifying kernel data and
modules

• many others

Each privilege has three properties applied to
a process or a file

• permitted: whether the process or file may
ev er hav ethe privilege

• inheritable: whether the process or file
may grant the privilege

• effective: whether the process or file can
currently use the privilege

Access to privilege is done with MAC
modules via thepriv_check () function.

Mandatory Access Control

Allows arbitrary security policies to be added
to the system using labels and an expansion
of traditional root access controls

Controls access/use of:

• files, pipes, and sockets

• kernel load-modules

• network interface configuration

• packet filtering

• process execution, visibility, signalling,
and tracing

• file mapping

• kernel data

• accounting information

• NFS exports

• swapping

Auditing

Accountability and intrusion detection

Based on Open Basic Security Module
(OpenBSM)

Generate records for kernel events involving

• access control

• authentication

• security management

• audit management

• user-level audit reports

Volume of audit trail is controllable

• audit preselection policy

• auditreduce to thin audit logs

User credentials can be augmented with an
audit identifier (AUID)

• Holds terminal and session to be added to
each audit record

• audit mask to subset global audit
preselection policy

Audit Handling

auditd daemon

• manages data collection

• content selection including selection of
records collected

• responds to events such as running low on
disk space

auditd daemon starts a kernel thread that
manages record distribution

• stored in local filesystem

• sent elsewhere for storage

• sent to intrusion detection daemon

Example audit record

Token ID (1)

Record byte count (4)

Version number (2)

Event type (2)

Event modifier (2)

Seconds (4/8)

Nanoseconds (4/8)

H
e
a
d
e
r to

k
e
n

•

•

•

C
o
m
p
le
te
 a
u
d
it re

c
o
rd
 c
o
n
s
is
tin
g
 o
f m

u
ltip

le
 to
k
e
n
s

Token ID (1)

Trailer magic (2)

Record byte count (4)

•

•

•

Token ID (1)

Path length (2)

Path (N + 1 NUL)

P
a
th

to
k
e
n

T
ra
ile
r

to
k
e
n

header,129,1,AUE_OPEN_R,0,Tue Feb 21 00:12:23 2006, + 253 msec
argument,2,0,flags
path,/lib/libc.so.6
attribute,444,root,wheel,16842497,11663267,46706288
subject,-1,root,wheel,root,wheel,319,0,0,0.0.0.0
return,success,6
trailer,129

Event was a call to open
with O_RDONLY

Call succeeded;
file descriptor 6
was returned

Path /lib/libc.so.6
was requested

Process authorizing the
system call was owned
by the root user

Capsicum

Sandboxing of limited trust modules

• A small process with full privileges

• Untrusted libraries/modules run in
separate process with access limited to
minimal set of things that they need

Capsicum logical applicationConventional UNIX process

Kernel

main
loop

vulnerable
compression

logic

Kernel

Process with
ambient authority

Capability mode process

main
loop

vulnerable
compression

logic

Selected rights
delegated to
sandbox via
capabilities

Using Capsicum

• Process put into capability mode with
cap_enter ()

• Once in capability mode, cannot exit

• Can only work with its own file
descriptors

• No access to filesystem namespace (e.g.,
open () will fail but openat () will work if
given a descriptor open on a directory
from which to start.

Sample Capsicum Capabilities

A set of rights is delegated to each descriptor

Sixty defined in/sys/sys/capability.h, some
examples:

• CAP_READ − Read or receive

• CAP_WRITE − Write or send

• CAP_SEEK − Modify file descriptor
offset

• CAP_FCHFLAGS − Set file flags

• CAP_FCHDIR − Set working directory

• CAP_FCHMOD − Change file mode

• CAP_FCHOWN − Change file owner

• CAP_LOOKUP − Use as starting
directory for at operations

• CAP_POLL_EVENT − Test for events
using select, poll, kqueue

• CAP_POST_EVENT − Post an event to
kqueue

• CAP_ACCEPT − Accept sockets

• CAP_LISTEN − Set up a listen socket

Questions

Marshall Kirk McKusick

<mckusick@mckusick.com>

http://www.mckusick.com

