

Fast Reboots with kload

● Russell Cattelan

Kernel Engineer
● cattelan@digitalelves.com
● http://git.digitalelves.com/?p=FreeBSD_kload.git

mailto:cattelan@digitalelves.com

Isilon Storage Systems a division of EMC

Sponsored by and funded

How does this help?

● Avoid reseting system

– BIOS/ POST takes along time
● Varies from system to system

● New kernel is loaded into memory before reboot

● Modeled on Linux's kexec / kdump

Building on userboot.so

● userboot.so developed for the BHyVe project
– FreeBSD Hyper Visor.

● Separates the guts of /boot/loader into a library that is
usable userspace utilities

– Forth interpreter

– elf loader

● Reads and sets up elf images in memory.

– Primary kernel image

– Kernel modules i.e. if_re.ko

● Temporary main memory image

● Populates kernel parameter page (kenv)

/sbin/kload

● Loads / configures / adjusts

– Reads kernel / modules – sets up memory image

– Builds smap by querying existing kernel via sysctl

● Map of system memory
● Command Line options

 -k flag add / override kenv parameters

 -e execute NOW skip shutdown routines

 -r sends kill signal to all processes – normal reboot

 -h alternate / loads a kernel not installed in /<arg>/boot

● Initiates kload syscall once everything is ready to go

The running kernel is the
loader

● userboot.so / kload does the image loading / setup
but it's not in the right spot in memory.

– First step is to allocate temporary pages in the lower 1 Gig
of memory. (This is sometimes a performance issue)

– Build a very simple scatter gather list of identity mapped
pages -- physical address + KERNBASE

– Setup simple GDT / pagetable

– Allocate code / stack / control pages

– Handle AP / interrupt shutdown

Scatter gather list of pages

Simple page list structure

– page_list – series of page address last address in
each page being a ptr to next page list

4

System clean up /
shutdown.

● Mostly the same as normal shutdown.
– Hooks into shutdown chain right before last event when

kernel is loaded

– Last shutdown event is to reset cpu / power down

#define SHUTDOWN_PRI_FIRST EVENTHANDLER_PRI_FIRST
#define SHUTDOWN_PRI_DEFAULT EVENTHANDLER_PRI_ANY
#define SHUTDOWN_PRI_LAST EVENTHANDLER_PRI_LAST
#define SHUTDOWN_PRI_KLOAD EVENTHANDLER_PRI_LAST - 100
 /* hook into the shutdown/reboot path so we end up here before cpu reset */
 EVENTHANDLER_REGISTER(shutdown_final,

kload_shutdown_final, NULL, SHUTDOWN_PRI_KLOAD);

kload_final

● Send Inter Processor Interrupt IPI to cpu 1 – X Application
Processors (APs) telling them to suspend

– Mask lapic on each cpu especially timer interrupts

This code needs to be reconciled with suspend /
resume

– Not ported to i386 yet

● De-install all ioapic interrupts (system wide interrupts routed to
a particular lapic)

● Mask lapic (Local Advanced Programmable Interrupt
Controller) on cpu 0 Board Support Processor (BSP) disable
cpu interrupts

● At this point system is ready to replace kernel

Replace old kernel image

● relocate_kernel

– Relocates itself and running stack so as to not clobber
itself (long jump)

– Turn off processor interrupts again :-)

– Install simple GDT with a writeable code segment (CS)
and writeable data segment (DS)

– Install identity mapped page table – entire address
space maps to first 1 Gig of memory

– Walk list of pages copy over the existing kernel pages
starting at KERNBASE

– Push kernel start address on to stack long jump to it

/* first install the new page table */
movq 32(%rcx), %rax /* page table */
movq 40(%rcx), %r9 /* address of control_page with new PT */
movq %rax, %cr3

movq $(X86_CR4_PSE | X86_CR4_PAE), %rax
movq %rax, %cr4

/* then move the stack to the end of control page */
lea 4096(%r9), %rsp
/*
 * now move to the code page
 * should have been passed code_page based
 * on new page table
 */
movq %rdx, %r8
addq $(identity_mapped - relocate_kernel), %r8
/* offset of code segment in new gdt */
pushq$0x08
pushq%r8
/* jump to this spot in the new page */
lretq

identity_mapped:
/* Do the copies */

.

.

.
pushq16(%r9) /* physfree */
movq 8(%r9), %rax /* modulep */
salq $32, %rax
pushq%rax

pushq$0x8
pushq48(%r9) /* entry # kernel entry pt */
/* jump to kernel entry pt */
lretq

/* first install the new page table */
movq 32(%rcx), %rax /* page table */
movq 40(%rcx), %r9 /* address of control_page with new PT */
movq %rax, %cr3

movq $(X86_CR4_PSE | X86_CR4_PAE), %rax
movq %rax, %cr4

/* then move the stack to the end of control page */
lea 4096(%r9), %rsp
/*
 * now move to the code page
 * should have been passed code_page based
 * on new page table
 */
movq %rdx, %r8
addq $(identity_mapped - relocate_kernel), %r8
/* offset of code segment in new gdt */
pushq$0x08
pushq%r8
/* jump to this spot in the new page */
lretq

identity_mapped:
/* Do the copies */

.

.

.
pushq16(%r9) /* physfree */
movq 8(%r9), %rax /* modulep */
salq $32, %rax
pushq%rax

pushq$0x8
pushq48(%r9) /* entry # kernel entry pt */
/* jump to kernel entry pt */
lretq

Lets try it out

Known Issues

● Drivers need to correctly shutdown the hardware

– Realtek driver needs a reset added to re_shutdown

● kmem_alloc_attr sometimes takes a long time to return
memory. Even to the point were it would probably be faster
to do a normal boot

– Memory is pre-allocated for now

● Debugging is very hard in asm code – needs to be
done with bochs

● Does not have a kload --unload option – memory can
not be released.

More gritty details

● Intel x86 emulator Bochs !!!!

– This project would have happened without this tool as
there is now way to debug things without hardware

level instruction debugging / stepping
● GDT page table mirrors what /boot/loader sets up

– These differ for amd64 and i386

– PAE kernel not supported?

● Could do tricks with page tables to reduce the number
of times the images needs to be copied

More gritty details

● Intel x86 emulator Bochs !!!!

– This project would have happened without this tool as
there is now way to debug things without hardware

level instruction debugging / stepping
● GDT / page table same as /boot/loader

– These differ for amd64 and i386

– PAE kernel not supported?

● Could do tricks with page tables to reduce the number
of times the images needs to be copied

GDT / IDT / TSS / Page
Table

● Global Descriptor Table

– Old way of loading multiple programs by
segmenting memory. Not used by paging
sytems but still need to setup a minimal GDT.

– Interrupt Descriptor Table.

– Create empty IDT table just to make sure, but
interrupts should be disabled.

– Task State Segment – not used during kload
should already set to ring0 (full privileges)

Create identity mapped page table

Identity mapped pagetable

● Page size set to 2 meg / page tables are built using 2
meg pages

● Amd64 / PAE used level 3 page tables

– 512 64 bit / 8byte address per 4k page for a total of
1Gig of memory per page

● I386 uses level 2

– 1024 32 bit / 4 byte address per 4k page

● Used the same code as the loader to set up page
tables as to keep things as simple as possible

Page table code

● Map all of the address space to the first 1GB

 for (i = 0; i < 512; i++) {
 /* Each slot of the level 4 pages points to the same level 3 page */
 PT4[i] = (pt_entry_t)(vtophys(PT3));
 PT4[i] |= PG_V | PG_RW | PG_U;

 /* Each slot of the level 3 pages points to the same level 2 page */
 PT3[i] = (pt_entry_t)(vtophys(PT2));
 PT3[i] |= PG_V | PG_RW | PG_U;

 /* The level 2 page slots are mapped with 2MB pages for 1GB. */
 PT2[i] = i * (2 * 1024 * 1024);
 PT2[i] |= PG_V | PG_RW | PG_PS | PG_U;
 }

a/sys/amd64/amd64/intr_machdep.c
a/sys/amd64/amd64/kload.c
a/sys/amd64/amd64/kload_exec.S
a/sys/amd64/amd64/machdep.c
a/sys/amd64/amd64/mp_machdep.c
a/sys/amd64/conf/KLOAD
a/sys/amd64/conf/KLOAD-CAMDEBUG
a/sys/amd64/include/apicvar.h
a/sys/amd64/include/intr_machdep.h
a/sys/boot/Makefile
a/sys/boot/common/Makefile.inc
a/sys/boot/common/load_elf.c
a/sys/boot/ficl/Makefile
a/sys/boot/i386/libi386/amd64_tramp.S
a/sys/boot/userboot/Makefile
a/sys/boot/userboot/ficl/Makefile
a/sys/boot/userboot/test/Makefile
a/sys/boot/userboot/userboot.h
a/sys/boot/userboot/userboot/Makefile
a/sys/boot/userboot/userboot/bootinfo64.c
a/sys/boot/userboot/userboot/conf.c
a/sys/boot/userboot/userboot/main.c
a/sys/boot/userboot/userboot/userboot_cons.c
a/sys/conf/files
a/sys/conf/files.amd64
a/sys/conf/kern.pre.mk
a/sys/conf/options
a/sys/dev/re/if_re.c
a/sys/i386/i386/kload.c
a/sys/i386/i386/kload_exec.S
a/sys/kern/init_sysent.c
a/sys/kern/kern_kload.c
a/sys/kern/kern_module.c
a/sys/kern/syscalls.c
a/sys/kern/syscalls.master
a/sys/kern/systrace_args.c
a/sys/sys/eventhandler.h
a/sys/sys/kload.h
a/sys/sys/reboot.h
a/sys/sys/syscall.h
a/sys/sys/syscall.mk
a/sys/sys/sysproto.h
a/sys/x86/x86/local_apic.c
a/sys/x86/x86/nexus.c
a/usr.sbin/kload/Makefile
a/usr.sbin/kload/kload.c

● From osdevwiki.org each must follow this format

● http://wiki.osdev.org/GDT

– Very hard to just decode

void
setup_freebsd_gdt(uint64_t *gdtr)
{
 gdtr[GUEST_NULL_SEL] = 0x0000000000000000;
 gdtr[GUEST_CODE_SEL] = 0x0020980000000000;
 gdtr[GUEST_DATA_SEL] = 0x0000920000000000;
}

References

● http://wiki.freebsd.org/BHyVe

● http://wiki.osdev.org

● http://bochs.sourceforge.net

● http://bhyve.org

http://wiki.freebsd.org/BHyVe
http://wiki.osdev.org/

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21

