
Ethernet Switch 
Framework
Fully utilize your Wifi router

Stefan Bethke
BSDCan 2012



The Power to Serve…

… in a $30 box

with Ethernet and Wifi

with USB



Why?

Built-in firmware is limited

Configuration management

Remote access

Special applications



Why FreeBSD?

OpenWrt, DD-WRT, etc.

Great projects, but not BSD



So what’s missing?

Adrian Chadd did the heavy lifting for QualcommAtheros HW

Drivers for Ethernet switch, some wireless HW

Shrinking FreeBSD to 8MB or even 4MB image 

Configuration mechanisms

Flash file system



Architecture & Design

Wifi Router Hardware

Framework Architecture

Configuration Interface

Further Work



Hardware

What‘s in a box?

System Components



What’s in a box?

•SoC

•SPI ROM

•RAM

•Radio



DRAM

WirelessFlash

CPU EthernetUSB

Switch

GPIO

Typical Busses
SPI: Flash
PCI: Wireless
MII: Switch, PHY
I2C: Switch
Various platform-
specific ones

System Components



32M RAM

AR91004M ROM

MIPS24K EthernetUSB

AR8216

GPIO

TL-MR3420

AR7241



TL-MR3420

5 100-BaseT ports, 802.11n Wifi, USB 2.0

Integrated Switch Controller

Controlled via MDIO interface

.1q VLAN tagging, priority

1 WAN Ethernet, 2nd Ethernet connected to switch (4 ports)



32M RAM

AR91008M ROM

MIPS24K EthernetUSB

RTL8366

GPIO

TL-WR1043ND

AR9132



TL-WR1043ND

5 1000-BaseT ports, 802.11n Wifi, USB 2.0

Realtek RTL8366RB Gigabit Switch Chip

Controlled via I2C-like interface, connected to CPU GPIO

.1q VLAN tagging, priority

Only one Ethernet interface, needs VLAN configuration for 
LAN/WAN split



Architecture & Design

Wifi Router Hardware

Framework Architecture

Configuration Interface

Further Work



Framework Architecture

Hardware-specific drivers for each chip (family)

Generic kernel API for configuration, management

IOCTL interface for userland via generic driver

PHY management via miibus(4)



RTL8366RB in TL-WR1043

MAC4

MAC

PHY4

PHY3

PHY2

PHY1

PHY0

MAC3

MAC2

MAC1

I2C

MAC0

MAC5
MDIO

Switch
Ctrl

GPIO



Device Tree – TL-WR1043
nexus0

gpio0

iicgpio0
gpiobus0

iicbb0
iicbus0

rtl8366rb0



802.3 MII Model

MAC

100bLX
PHY

100bFX
PHY

100bTX
PHY

8P8C „RJ45“

Fiber

Fiber

MDIO/MDC

TX*/RX*/COL/CRS



Device Tree—2 Ethernets
nexus0

arge0

*phy0

miibus0

arge1

*phy1

miibus1

PHY 
driver according 
to auto-attach



miibus(4) API
miibus_if.m methods

MDIO access: readreg, writereg

MAC configuration: linkchg, statchg, mediainit

if_media.h callbacks

MAC configuration: change, status

mii_attach uses both device_t and ifnet



Port PHYs – TL-WR1043
rtl8366rb0

miibus0
phy0

ifnet



Switch Controllers on MDIO

Connected to the CPU via MDC/MDIO lines

Some look like PHYs with additional registers

Some have completely different register model

miibus(4) not really prepared to deal with this



AR7241 Switch

GE0
MDIO MAC4

GE1
MDIO

MAC

PHY4

PHY3

PHY2

PHY1

PHY0

MAC

MAC3

MAC2

MAC1

MAC0

MDIO

MAC5
MDIO

Switch
Ctrl



?

Device Tree—Switch/PHY
nexus0

arge0

*phy4

miibus4

arge1
Switch



Device Tree—floatphy
nexus0

arge0

floatphy4

miibus4

arge1
Switch



floatphy

Presents as a PHY driver attached via hint

Funnels MDIO access through hidden channel to switch driver

Replaces existing PHY drivers



Device Tree—miiproxy
nexus0

argemdio0 mdio0 Switch

mdio1maddr=0x1a mdioproxy1

*phy4miibus4miiproxy0

mdio=mdioproxy1

arge0



MDIO/MII Proxy

Separates MDIO access from MAC configuration

Provides attachements to both MDIO and Ethernet driver

Fully transparent to miibus(4) and PHY drivers



Switch Driver Attachment

Generic “switch bus” abstraction

Standard newbus APIs



Switch Driver Attachment

Generic “switch bus” abstraction

Bus-specific driver shim attaches to bus

Generic code provides external API & register abstraction

Switch driver attaches to generic driver



Device Tree—Switch Bus
Bus

Shim

HW-spec.

switch0 ioctl cdev

newbus
methods



Switch Driver Attachment
Standard newbus, bus_space APIs

Hardware-specific switch driver attaches to bus

Provides generic API through newbus methods

IOCTL driver attaches to HW-specific driver

Additional drivers can attach to in-kernel API

Auto-attaching



Device Tree—Std. Newbus
Bus

HW-spec.

others…

switch0 ioctl cdev
newbus
methods



Architecture & Design

Wifi Router Hardware

Framework Architecture

Configuration Interface

Further Work



Abstract Switch

Switches vary considerably, esp. in advanced features

Base feature set comparable

PHYs on ports

16 VLAN entries

MAC table management



Must-have Features

Initialization

Register Peek and Poke

Capability API

Port-based and .1q VLANs



VLAN Managment

Port-based and .1q VLANs are mutually exclusive 

Ports are either trunked (.1q tagged) or untagged

Ports have a default VLAN ID

VLAN entries have a VLAN ID, member port list



Architecture & Design

Wifi Router Hardware

Framework Architecture

Configuration Interface

Further Work



To-Do

Finalize open questions (attachment, miibus, API) ✔

Commit base version ✔

Update existing drivers

Add additional drivers for common hardware



The Future
Advanced switch features

.1Q Priority Queues

Forwarding table management, Packet Filtering

NAT

Spanning Tree

.1X Port Security



People & Links

Adrian Chadd adrian@freebsd.org

Aleksandr Rybalko ray@freebsd.org

Stefan Bethke stb@freebsd.org

wiki.freebsd.org/StefanBethke/EtherSwitch

zrouter.org

mailto:adrian@freebsd.org
mailto:adrian@freebsd.org
mailto:ray@freebsd.org
mailto:ray@freebsd.org
mailto:stb@freebsd.org
mailto:stb@freebsd.org
http://wiki.freebsd.org/StefanBethke/EtherSwitch
http://wiki.freebsd.org/StefanBethke/EtherSwitch
http://zrouter.org
http://zrouter.org

