
FreeBSD on Freescale QorIQ Data Path
Acceleration Architecture Devices

Michał Dubiel, Piotr Zięcik
Semihalf,

md@semihalf.com, kosmo@semihalf.com

Abstract

This paper describes the design and im-
plementation of the FreeBSD operating sys-
tem port for the QorIQ Data Path Acceler-
ation Architecture, a family of communica-
tions microprocessors from Freescale. These
chips are modern, multi-core, PowerPC based
SoCs, which feature a number of specifically
designed peripherals, addressed for the high
performance networking devices, which are in-
creasingly common in modern communication
infrastructure.

The primary focus is the Data Path Ac-
celeration Architecture (DPAA) with the new
approach to network interface architecture. It
has significant influence on the FreeBSD device
drivers design and implementation. The paper
describes how the full network functionality was
brought forward, and also covers other major
development tasks like the e500mc quad-core
SMP bring up and support for other integrated
devices.

1 Introduction

Increasing number of services available
through the Word Wide Network, creates new
challenges for the telecommunication indus-
try. Bandwidth requirements are continuously
growing, which implies more and more packet
processing power. Situation is getting worse,
as security concerns has to be taken into ac-
count. Modern telecommunication systems
have to perform a real-time deep packet inspec-
tion, classification and be immune to sophisti-
cated attacks.

To cope with the problems mentioned
above, System-On-Chip (SoC) designers have
been introducing specially dedicated architec-
tures. These combine a sophisticated hardware
modules, which take over more and more pro-
cessing responsibilities from CPU cores. One
example of such an architecture is Freescale
QorIQ Data Path Acceleration Architecture,
which is the platform for this work.

In order to utilise the facilities brought by
those architectures, a new software is necessary.
There have already been several advanced, se-
cure and stable operating systems like FreeBSD
available for years. It seems obvious to com-
bine their powers with the capabilities of the
new hardware.

In this paper, a FreeBSD port for the
Freescale QorIQ Data Path Acceleration Ar-
chitecture SoCs is presented. Design and im-
plementation details, development process and
challenges encountered are all given. Also, an
overview of the QorIQ DPAA SoC hardware is
outlined to help better understand design and
implementation decisions made.

This work is based on the existing
FreeBSD port for Freescale PowerQUICC III
series of SoCs ([E500BSD]). The result is
a fully functional FreeBSD system running on
Freescale QorIQ DPAA SoCs, which facilitates
the DPAA hardware components to achieve sig-
nificant network performance advance.

2 Hardware

Freescale QorIQ Data Path Acceleration
Architecture consists of up to eight Pow-



Figure 1: QorIQ P3041 Communication Processor (Source: [P3041FS]).

erPC cores supporting virtualization, security-
enhanced interconnect fabric and several hard-
ware components offloading CPUs from packet
processing. The Figure 1 presents internal
structure of the P3041 SoC, a middle-class
member of the QorIQ DPAA family. The fol-
lowing subsections describe the architecture in
greater details.

2.1 e500mc core

The e500mc core is a next generation
of the e500 core described in [E500BSD] with
greater details. The extensive description of
the core is out of the scope of this paper and
only major improvements of the e500mc core
are presented here.

From the perspective of performance, the
e500mc core has introduced an integrated L2
cache and an improved FPU. Furthermore, the
TLB sizes have been increased. There are 512
constant size entries and 64 variable size en-
tries. The core also come out with a decorated
load/store instructions.

The decorated load/store instructions
add meta-data (decoration) to the basic
load/store operations. This meta-data are used
to define additional actions, which may be per-
formed during I/O transactions. For example,

the value that is being stored can be added to
the actual word located in the memory instead
of just overwriting it. The QorIQ DPAA SoCs
define several decoration actions providing ba-
sic arithmetic and logic operations as well as
min/max and accumulation functions.

Another new feature introduced by the
e500mc core is an additional execution privilege
level (right above the supervisor level present
in the classic PowerPC architecture), which
extends the virtualization capabilities. Pro-
gram running on this level is allowed to use
another unique feature of the core — external
PID load/store. These are special instructions,
which execute I/O requests in the different con-
text (defined by hypervisor) than the current
running one.

The core also provides better integra-
tion within the SoC. Power management of
both the core and the SoC is now combined,
which reduces programming efforts. Inter-core
communication has been improved by adding
message-send and message-clear instructions
using a new core2core doorbell interrupt.

The last but not the least feature intro-
duced by the e500mc core is cache stashing.
With assistance of the SoC interconnect, se-
lected part of any given device ↔ memory

2



transfer can be placed also in the CPU L2
cache. The stashing mechanism is targeted to
accelerate software packet processing. For ex-
ample, every time when Ethernet Interface re-
ceives TCP/IP packet, the first couple of bytes,
containing protocol headers, can be stored in
the cache. Then, the CPU during packet pars-
ing will fetch data directly from L2 cache in-
stead of performing expensive memory access.

2.2 CoreNet Interconnect Fabric

The e500mc core and all major periph-
erals are connected with CoreNet Interconnect
Fabric, which represents modern Network-on-
Chip approach. Its design solves security prob-
lems introduced by virtualization. Guest op-
erating systems are not able to access each
other directly (due to protections built-in the
e500mc core), however they are able to config-
ure a hardware component (such as DMA en-
gine) to access all available memory, including
areas occupied by other guest OSes. To avoid
such situation, called DMA-attack, hypervisor
virtualizes all accesses to the hardware. This
simple solution has significant performance im-
pact, which can be avoided by using Peripheral
Access Management Units (PAMUs) integrated
in the CoreNet interconnect.

2.2.1 Peripheral Access Management
Unit

The Peripheral Access Management Unit
(PAMU) is a hardware, through which every
I/O and memory transaction passes. Each
transaction, characterised by Logical I/O De-
vice Number (LIODN) and address, must
match a specific set of rules defined by soft-
ware in the very similar way as MMU entries.
The matching rule may allow, deny or redirect
the transaction to other destination, as well
as modify its cache coherency and stashing at-
tributes. Worth noting is that LIODN consists
of two fields. One is hardwired to requesting
device, whereas second may be generated by
the hardware by using data included in a re-
quest. For example, Ethernet controller’s DMA
may assign specific LIODNs to packets received
from given 802.1q VLANs.

2.2.2 Platform Cache

Another interesting component of QorIQ
DPAA SoCs is Platform Cache. In difference
to CPU caches, the Platform Cache is placed
between memory controller and CoreNet inter-
connect. As a result all requests to memory are
accelerated, not only these generated by pro-
cessors. This reduces memory controller con-
tention by small transfers, such as reception
and transmission of small Ethernet packets.

2.3 Data Path Acceleration Architec-
ture

The Data Path Acceleration Architecture
is the key component characterising QorIQ
DPAA SoC family. It provides an infrastruc-
ture for hardware-accelerated packet process-
ing, such as bridging, routing, packet filtering
and IPSec processing, to name just a few. The
DPAA offloads CPU in four areas: data buffer
management, queue management, packet dis-
tribution, and policing.

Data Buffer management is realised by
a specialised component called Buffer Manager
(BMan). Data buffers can be allocated and
deallocated (by software and hardware com-
ponents) from user-defined pools. The BMan
automatically manages these pools, only sig-
nalling depletion state when the number of
buffers in the pool falls below predefined thresh-
old level.

Queue management is realised by Queue
Manager (QMan). Data buffers (not necessar-
ily allocated form BMan) might be organised
into frames containing one or more buffers, and
then put further into queues, which are fully
managed by the QMan. The queues provide an
effective data exchange infrastructure between
CPUs and/or DPAA components.

The Frame Manager (FMan) is responsi-
ble for packet distribution and policing. Each
frame can be parsed, classified and results
might be attached to the frame. This meta
data might be used to select particular QMan
queue, which the packet is forwarded to, or to

3



Figure 2: Example of QorIQ Data Path Accel-
eration Architecture (Source: [DPAARM]).

control flow bandwidth. The FMan supports
both online (when packets arrives from inte-
grated MACs) and offline (when packets are
taken from memory) processing.

The Figure 2 presents the interactions be-
tween the DPAA components. Some of them
are described in greater details in the following
sections.

2.3.1 Buffer and Queue Manager

As it was mentioned, the BMan holds and
manages pools of data buffers. Each buffer is
represented only by a pointer. To allocate the
buffers, software just reads the pointers from
special set of registers (called portals). Deallo-
cation is just an opposite: software has to write
the pointers to the portal. There are up to ten
portals, which can be assigned to the CPU core
and/or application. As accesses to the por-
tal are atomic, no locking is required as long
as the portal is not shared. Such mechanism
eliminates lock contention, which greatly de-
grades performance in multi-core systems. The
same access method applies to Queue Manager.
Putting a frame into a queue is in fact writing
of a frame descriptor into a QMan portal.

Portals are also able to signal various con-
ditions by raising an interrupt. For example,
QMan portals asserts interrupt when there are
more than predefined number of frames in the
queue, or when a frame is being held in the
queue over a specified time.

2.3.2 Frame Manager

Frame Manager is central and the most
complex part of the Data Path Acceleration Ar-
chitecture. It is responsible for packets recep-
tion, transmission, parsing, classification and fi-
nally routing them into relevant QMan queues.
Simply speaking, it is the heart of a hard-
ware packet processing. The above tasks are
fulfilled by dedicated FMan sub modules, de-
scribed later on in this subsection.

There are several 1Gbit/s and 10Gbit/s
Media Access Controllers (MACs) integrated
into the Frame Manager, each associated with
single physical Ethernet interface. Its num-
bers vary from one SoC version to another, but
in most cases there are five 1Gbit/s and one
10Gbit/s interfaces. Those are directly respon-
sible for packet transmission and reception over
the media.

Whereas FMan MAC connects FMan to
network, Buffer Manager Interface (BMI) and
Queue Manager Interface (QMI) sub modules
provide communication means with the Buffer
Manager and the Queue Manager respectively.
Those are necessary, as full potential of the
Data Path Acceleration Architecture can only
be exploited while using all BMan, QMan
and FMan components cooperating with each
other.

FMan MACs, BMI and QMI sub modules
offer packet frames interchange between the
Frame Manager, network and other SoC mod-
ules like CPU cores, Security Engine (SEC),
etc. However, as it was mentioned earlier,
Frame Manager allows also for packet parsing,
classification and policing. These features are
provided by FMan Controller, Parser, KeyGen,
Policer and Frame Processing Manager (FPM).

A central unit responsible for hardware
frames processing inside the FMan is Frame
Processing Manager. It distributes frame pro-
cessing tasks amongst the other FMan sub
modules, where those are processed next.

The FMan Controller, Parser, KeyGen
and Policer form so called Parse Classify and

4



Distribute (PCD) flow. The Parser is used
to identify the incoming frames. It recognises
many standard protocols and also allows for
custom and/or future protocol parsing. Its out-
put, called parse result, is then used by classi-
fication modules.

There are two categories of frame classifi-
cation: hash based and table lookup. The for-
mer is realised by the FMan KeyGen sub mod-
ule. Hashing can be performed from many dif-
ferent fields in the frame and/or from the parse
result. The second, table lookup, is performed
by the FMan Controller. It looks up certain
fields in the frame, which are selected by the
combination of user specified configuration and
what fields the FMan Parser actually encoun-
tered. The classification of frames (either hash
based, table lookup or both) determines a sub-
sequent action to take.

An example of such an action might
be frame policing, performed by the FMan
Policer. It supports many policing profiles
based on two-rate, three-color marking algo-
rithm ([RFC2698]). Burst sizes, sustained and
peak rates are all user-configurable.

Finally, results obtained from the FMan
sub modules described above are used to select
a queue to which a frame is to be enqueued.
Those queues might be associated with different
modules within the SoC (CPU core, Security
Engine, etc.), which dequeues the frames and
perform further processing.

For example, the FMan MAC receives
a frame and forwards it to the FMan Parser.
After parsing, it turns out that the frame is en-
crypted. An encryption keys are then attached
to the frame and it is send to the Security En-
gine, where it is decrypted without using any
of the CPU cores. Next, the already encrypted
frame is given back to the FMan for further
classification, policing and then send to either
the CPU core for software processing or trans-
mitted elsewhere through the network.

Each FMan sub module is highly config-
urable. Many of its functionalities can be tuned
in a run time, which makes the FMan a power-
ful hardware frame processor.

3 Software

Having a first-class hardware is worth
nothing without a high quality software. In
this chapter, process of porting the FreeBSD to
the QorIQ DPAA devices and challenges in the
DPAA integration with the OS’s TCP/IP net-
work stack are presented. The whole process,
step by step, starting from toolchain adjust-
ment and ending with fully functional FreeBSD
system utilising facilities of the QorIQ DPAA
platform is described in the following subsec-
tions.

3.1 Toolchain

Introduction of the new e500mc core has
implied a necessity of toolchain adaptation.
The existing FreeBSD PowerPC code had al-
ready supported the e500mc predecessor, thus
only addition of a few new instructions was
required. To fulfil this, appropriate changes
to both binutils and gcc were applied. Fortu-
nately, the e500mc patch for binutils had been
already available through the community and
gcc patch had been delivered to us by SoCs sup-
plier — Freescale.

3.2 Early kernel initialisation in lo-
core.S

The locore.S contains an assembly, archi-
tecture dependent code, which is executed at
the very beginning of the FreeBSD start up.
The main goal of this code is preparation of
the environment for C-code execution.

In PowerPC architecture, the locore.S is
responsible for TLB and kernel stack initialisa-
tion. This topic is well described for the e500
core in [E500BSD], in the example of MPC8572
SoC bring up. This subsection focuses only
on the changes introduced by the new e500mc
core.

The first thing that differs e500mc from
its predecessors is a bigger Transaction Look-
aside Buffer (TLB). This has implied slight

5



changes of bit-fields length in registers control-
ling the TLB. Because the locore.S code uses
these registers in multiple places, this small
hardware change has enforced thorough line by
line analysis and many adjustments in the as-
sembly code.

Besides the bigger TLB, new hypervisor
privilege level present in e500mc core has intro-
duced new MMU assist registers (MAS). These
registers have to be set accordingly during each
TLB access. Simply adding direct references
to those new registers would broke backward
compatibility, as accesses to non-existent regis-
ters are causing exception and eventually sys-
tem hang-up (exceptions in this stage can not
be handled yet). To cope with this, spe-
cial procedures were added (zero_mas7 and
zero_mas8). This routines perform a run-time
core identification and write to the MAS regis-
ters (MAS7 andMAS8 respectively) only if the
running processor actually has those. Analo-
gous tweaks were necessary to handle Hardware
Implementation-Dependent Registers’ (HIDs)
accesses correctly.

The machine-dependent portion of vir-
tual memory subsystem (pmap(9)) also had to
be slightly changed. However, as the most
pmap(9) modifications are related to Symmet-
ric Multi-Processing, they have been described
in appropriate chapter: 3.4.

3.3 QorIQ Data Path Acceleration Ar-
chitecture

As OpenPIC and UART drivers had al-
ready existed in the FreeBSD, the next ma-
jor task was networking bring up. Because
of the SoC architecture, this involved creation
of device drivers for variety of DPAA compo-
nents, including the most complicated one —
the Frame Manager.

During the research, preceding drivers de-
velopment, it was found that effort could be
greatly reduced by using drivers from Freescale
NetCommSw software pack. The NetCommSw
is a packet processing framework, able to run on

Figure 3: NetCommSw Driver model.

a bare-bone hardware. It consists of low-level
OS agnostic device drivers, protocol stacks and
development tools, everything targeted to rapid
development. Unfortunately, this software pack
is proprietary licensed.

However, it was found that one part of
the NetCommSw — the Frame Manager driver,
had been already available under the BSD li-
cense elsewhere. Utilising a ready to use driver
for the most complex DPAA hardware com-
ponent, greatly reduced the development time.
Moreover, Freescale, who is the owner of the
NetCommSw software, agreed to release addi-
tional parts of this suite under the BSD license.

In the end, all necessary for this work
NetCommSw Low-Level Drivers (Buffer Man-
ager, Queue Manager and Frame Manager)
were available under the BSD license and ready
to integrate into the FreeBSD Project.

3.3.1 NetCommSw drivers integration

All NetCommSw drivers share the same
programming model, shown on the Figure 3,
which is optimised for easy integration with
various operating systems. In the centre of the
model the Low-level Device Drivers lie. The

6



drivers export high-level device-specific object-
oriented API abstracting device functionalities.
Only the middle part of this model, the Low-
level Device Drivers, had been provided by
Freescale. Both Wrapper Drivers and XX Rou-
tines had to be implemented.

All accesses to the hardware are per-
formed through several operating systems
hooks called XX Routines. Those are also used
to obtain OS resources like locks and memory,
as well as to register interrupt handlers. The
XX layer makes the drivers fully OS-agnostic.

A Wrapper Driver, placed over the Low-
level Device Driver, is also required. It is re-
sponsible for attachment to the operating sys-
tem and translation of OS calls to the device-
specific Low-level Device Driver API. At this
level all accesses to the hardware have to be
serialised. This implies lock utilisation.

The XX Routines interface is quite
straightforward and well defined. Mapping
it to the FreeBSD kernel’s internals was not
a hard task (what should be a body of the
XX_Malloc() function?). Nevertheless, not all
functionalities required by this layer had been
already available in the FreeBSD kernel. The
most clear example is physical to virtual ad-
dress translation.

Such translation is not used and thus not
supported in the FreeBSD kernel at all. More-
over PA to VA mapping is ambiguous, as multi-
ple virtual pages might be linked with one phys-
ical page. To deal with this problem a list of all
active mappings referencing given physical page
has been added to the machine-dependent part
of vm_page structure. Each time, when VA
to PA mapping is created, the pmap_enter()
function adds new entry to the list. Alike, the
entry is removed when given mapping is de-
stroyed in pmap_remove().

The XX Routines use a given physical ad-
dress to get the appropriate vm_page structure
and then utilise it to obtain a list of active
translations. In case of multiple mappings, only
the first found (last added) entry is used to ex-
tract virtual address.

The other class of problems found during
XX Routines implementation was this related
to the Symmetric Multi-Processing. Those are
described in appropriate section 3.4.1 of this
article.

Writing of the Wrapper Drivers, which are
just newbus compliant attachments, was almost
effortless. However, as well as in the case of
XX Routines the SMP implementation required
additional work, also described in section 3.4.1.

3.3.2 Frame Manager driver

Integration of Frame Manager Driver re-
quired a special care. Unlike Buffer Manager
and Queue Manager, the FMan consists of sev-
eral subsystems (described in section 2.3.2).
Each of them is represented by separate APIs
in the NetCommSw Frame Manager Low-level
Driver. Because of that, no single Wrapper
Driver was created, but instead some sort of
software partitioning was applied.

At first, the common part used by all sub
modules was implemented as a single driver in
the FreeBSD newbus approach. It is responsi-
ble for early Frame Manager initialisation and
also manages internal FMan resources used by
sub module’s specific drivers.

Every driver utilising any of the Frame
Manager capabilities, has to acquire resources
from the FMan driver. One of the example
is a Datapath Triple-Speed Ethernet Controller
(dTSEC) driver, which implements the entire
network functionality.

3.3.3 Datapath Triple-speed Ethernet
Controller driver

From a perspective of operating system,
the dTSEC is a classical network device driver.
It implements a set of special networking in-
terfaces defined by the FreeBSD kernel, ex-
tensively utilising the following DPAA compo-
nents: Buffer Manager, Queue Manager and
Frame Manager.

7



Figure 4: dTSEC packet transmission data flow.

Figure 5: dTSEC packet reception data flow.

First thing the dTSEC driver does, is
the configuration of FMan sub modules: BMI,
QMI, FPM and MAC. Those combine a mini-
mal set of required components that have to be
initialised in order to be able to send and re-
ceive Ethernet packets. All these units are fully
abstracted by two NetCommSw Frame Man-
ager Low-Level Drivers’ interfaces: FMan MAC
and FMan Port.

The FMan MAC interface is used to com-
municate with the MAC sub module only,
whereas FMan Port interface abstracts accesses
to the FPM, BMI and QMI. It is, hence, the
only way to control data flow from and to the
Frame Manager. Moreover, each instance of the
FMan Port interface is able to handle either the
transmission or the reception flow and can be
associated with exactly one MAC. As a conse-
quence, each Ethernet network interface driver

has to utilise at least two FMan Ports and one
FMan MAC instances.

But this is not enough to exchange net-
work packets with the MAC. Since Frame Man-
ager uses BMI and QMI for all accesses to
system memory, Buffer Manager and Queue
Manager have to be also utilised by the dT-
SEC driver. For example, received frames’
data is written to memory buffers provided
by Buffer Manager and simultaneously repre-
sented as a new frame enqueued to the Queue
Manager.

On the transmission path, the dTSEC
driver creates two QMan Frame Queues, and
attaches them to FMan TX Port. The first
queue, called Transmission Queue, is used to
feed the Frame Manager with a data to be
transmitted. The driver only enqueues frames

8



into the queue. Nothing else is necessary.
Transmitted frames are then returned through
the second queue, called Transmission Confir-
mation Queue. After checking the status code
for errors, the driver frees memory associated
with the transmitted frames.

On the reception path, the dTSEC driver
creates only one QMan Frame Queue and one
Buffer Pool managed by the Buffer Manger.
Both the Frame Queue and the Buffer Pool are
then associated with the FMan RX Port. After
the FMan MAC receives a packet, a free Buffer
is allocated from the given Buffer Pool to hold
the received data. Then, a frame referencing
the buffer is created and enqueued to selected
Frame Queue. The driver job is to only fetch
frames from the Frame Queue associated with
the FMan Rx Port.

Quantity of free buffers in the Buffer Pool
is maintained by the Buffer Manager itself.
When a number of the buffers in pool falls be-
low the defined depletion threshold, an inter-
rupt is asserted. As a result the BMan driver
notifies the dTSEC driver, which uses uma(9)
zone allocator to provide fresh memory buffers.
Buffers used by received packets are released
back to the Buffer Manager Pool, unless it has
predefined number of buffers. Otherwise, the
recycled buffers are freed back to uma(9).

Described above data flow is illustrated
on the Figure 4 and the Figure 5.

As all data between dTSEC driver and
hardware transfers are performed through spe-
cialised BMan an QMan portals, briefly de-
scribed in 2.3.1, the software overhead is negli-
gible. Moreover, the performance is further im-
proved by interrupt throttling embedded into
the Queue Manager.

3.3.4 DPAA in newbus hierarchy

As was mentioned earlier, all DPAA com-
ponents had been implemented as newbus com-
pilant drivers. Their layout in driver hierarchy
reflects SoC memory map. The drivers are at-
tached and initialised by applying depth-first

Figure 6: DPAA in newbus hierarchy.

tree search algorithm to this structure. This
stays in conflict with DPAA hardware initiali-
sation requirements.

To cope with this situation a virtual bus
named DPAA was introducted. The drivers
utilising more than one DPAA components
(BMan, QMan and FMan) had to be placed
under this bus (see the Figure 6 for details),
which ensures proper initialisation order.

3.4 SMP bring up

The QorIQ Data Path Acceleration Ar-
chitecture SoCs are equipped with up to eighth
e500mc cores. The possibility of utilising its
power using Symmetric Multi-Processing, gives
system designer an additional advantage.

The FreeBSD had already supported
SMP on the e500mc core predecessors (see
[E500BSD]). As differences introduced by the
e500mc core are not directly related to multi-
processor support, it seemed that enabling the
SMP support would not require extra effort.

However, existing model of Inter Proces-
sor Interrupt (IPI) handling had not taken into
account hardware limitations. It worked well
with up to two cores, but adding new one dis-
turbed inter-core communication. When an IPI
was send to multiple cores, only one of them ac-
tually received the message.

Investigation showed that IPI messages
were send one-by-one through single communi-
cation channel without its availability checking.

9



Figure 7: DPAA Portal mappings.

As the hardware treats communication channel
as busy until target core acknowledges message
reception, only the first message in the burst
was actually delivered.

To cope with this problem IPI multi-
casting was implemented. Instead of send-
ing IPI messages to multiple cores sequentially,
a one multi-cast message is used. This change
allowed for successful bring up of quad-core
SMP.

Nevertheless, the integration of SMP with
Data Path Acceleration Architecture enforced
further deep changes in both the FreeBSD and
NetCommSw drivers.

3.4.1 DPAA in SMP environment

As it was described in 2.3.1, accesses
to Buffer and Queue Managers are performed
through special registers called portals. While
the accesses from different CPU cores are per-
formed through separate portals, there is no
need for serialisation. This approach eliminates
bottleneck caused by lock congestion in SMP
environment.

In order to utilise this advantage, it was
decided to assign one dedicated portal to each
CPU core. The core↔ portal mapping is trans-
parent to CPU. Each portal occupies the same
virtual address on each core (see Figure 7) for
details).

However, existing FreeBSD SMP support
for e500 family allowed for only one, shared by
all cores, device mapping. Originally, all de-
vice mappings were simply copied from boot-
strap CPU to application CPUs. This approach
has been partially reused. Now, only mappings
marked as shared are copied. The mark is lo-
cated in special user-defined bits, available in
TLB entries of the whole e500 family. This sim-
ple change required significant modification of
pmap(9) part responsible for device mappings,
as well as CPU start-up procedures.

The new approach has also implied
changes in NetCommSw Wrapper Drivers.
When FreeBSD drivers are attached, only the
bootstrap CPU is alive. Thus, mappings for
the application CPUs can not be set at this
stage. Beside that, the driver also has to con-
figure each mapped portal.

In consequence, after FreeBSD start up,
only one portal attached to bootstrap CPU is
accessible. But, as all cores are running at
this stage, accesses to drivers might be initi-
ated from any of them. Hence, the Wrapper
Drivers are responsible to map and configure
portals during the first access from any of the
application CPUs.

However, run-time portal creation caused
a new problem to appear. From NetCommSw
Wrapper Driver perspective, portal configu-
ration is reduced to just few calls to Net-
CommSw Low-Level Driver. Then, Low-Level

10



Driver, uses XX Routines to obtain OS and
hardware resources. One of the types of al-
located resources is an interrupt. In the
FreeBSD, requesting an interrupt might sleep
in intr_event_create(), hidden deeply in the
operating system. As portal might be created
at any time, the sleep during interrupt request
introduces several locking issues.

For example, the FreeBSD TCP/IP stack
might send a packet to network drivers holding
a lock related to network protocol. If sending
the packet requires portal configuration on any
of the application processors, then sleep with
lock held may occur, which is prohibited.

To deal with this problem, an additional
layer for interrupt management in XX Rou-
tines has been introduced. Interrupt registra-
tion calls from NetCommSw Wrapper Drivers
are not directly translated to its FreeBSD coun-
terparts, but instead obtained from the new
layer, which preallocates them during the sys-
tem start up.

Nevertheless, the interrupt allocation is
not the only problem here. An interrupt, as-
serted by any given portal, might be scheduled
for execution on any of the processor cores. As
each core has access to only single dedicated
portal, the incorrectly scheduled interrupt rou-
tine will service other portal than this assigned
to it. Thus, the additional interrupt manage-
ment layer in XX Routines has been also made
responsible for binding the interrupt threads to
proper CPU cores.

4 Other peripherals bring up

Besides the e500mc core, SMP and
DPAA, support for other peripherals like PCI
Express, USB EHCI controller, I2C controller
and internal SoC’s DMA was added. However,
these devices had been already well supported
in the FreeBSD kernel and bring up effort was
reduced to proper assignments of system re-
sources with those drivers only.

5 Current state and results

Currently, the FreeBSD fully supports
three members of a QorIQ Data Path Accelera-
tion Architecture family: P2041 (quad core, 1.2
GHz), P3041 (quad core, 1.5 GHz) and P5020
(dual core, 2.0 GHz). Besides the DPAA sub-
system, there are ready to use drivers for the
USB 2.0 EHCI, SD/MMC Controller and other
peripherals like UARTs, I2C and DMA con-
trollers. The built-in PCI Express is also sup-
ported.

Network tests, has shown that the
DPAA architecture significantly reduces
CPU utilisation related to packet processing.
On P3041 SoC, the iperf tool (# iperf -c
<iperf-server> -l 16M -w 128k -t 60)
gave 897 Mbit/s transfer rate through single
Ethernet interface. The CPU utilisation during
the test was below 30%. The 90% of this load
was caused by interrupt servicing and could be
reduced by enabling polling mode, which has
not been implemented yet.

The following listing, showing the
FreeBSD interrupt counters, lay out almost
equal distribution of packets between different
Queue Manager portals (interrupts 120-126)
and thus CPU cores respectively.

p3041# vmstat -i
interrupt total rate
irq121: bman0 1 0
irq120: qman0 2784930 3584
irq122: qman0 2194130 2823
irq124: qman0 2263079 2912
irq126: qman0 2148167 2764
(...)

Also, a small number of interrupts as-
serted by Buffer Manager shows that memory
buffers management is performed entirely by
the hardware and software intervention is not
necessary (the one, visible interrupt is asserted
during initial Buffer Pool creation).

11



6 Future work

Although current state of the FreeBSD
QorIQ DPAA port is stable and runs on the ma-
jority of the QorIQ DPAA family SoCs, support
for some integrated peripherals is still missing.
This includes built-in SATA controller and few
members of the DPAA subsystem like Pattern
Matching Engine (PME) and Security Engine.

Also not all features of the DPAA, that
could be used by the FreeBSD TCP/IP stack
are available. The pooling mode, hardware
packet checksumming and Jumbo Frames are
not supported.

Worth trying would be integration of ad-
vanced Frame Manager capabilities, like fully
hardware IPSec processing with the FreeBSD
TCP/IP stack.

7 Conclusions

The FreeBSD can be successfully used
on the QorIQ Data Path Acceleration Archi-
tecture SoCs. It is also able to utilise ma-
jority of the features available in the hard-
ware. Although the full hardware packet pro-
cessing provided by those SoCs is not sup-
ported, which would require deep changes in
the FreeBSD TCP/IP stack, the overall net-
work performance achieved in this work is
promising.

8 Summary

In this paper, the FreeBSD port for QorIQ
Data Path Acceleration Architecture SoCs was
presented.

First, an overview of the QorIQ DPAA
SoC hardware was given, including the new
e500mc core and CoreNet Interconnect. Spe-
cial attention was put on the DPAA compo-
nents: Buffer Manager, Queue Manager and
Frame Manager.

Next, process of porting the FreeBSD
to the QorIQ DPAA devices, along with the

challenges encountered during the DPAA inte-
gration with the OS’s TCP/IP network stack
were presented. This included new toolchain
adaptation, early kernel initialisation (locore.S
part), DPAA components’ drivers implementa-
tion and Symmetric Multi-Processing bring up.

Finally, the result of the porting process
was given. It consists of a fully functional
FreeBSD system running on P3041 SoC and
utilising the facilities of the Data Path Acceler-
ation Architecture to achieve considerable net-
work performance boost.

9 Acknowledgements

Special thanks go to the following people:

Rafał Jaworowski (Semihalf, The
FreeBSD Project), mentor of this project.

Phil Brownfield (Freescale), for help and
support with relicensing the NetCommSw code
and device tree source files.

Zbigniew Bodek, Piotr Nowak, Tomasz
Nowicki, Jan Sięka, Łukasz Wójcik (all Semi-
half), for all the work on this project.

Work on this paper was sponsored by Semihalf.

10 Availability

The code described in this paper is (or will
soon be) available from the FreeBSD Project
Subversion repository, CURRENT branch.

References

[E500MC] Freescale Semiconductor, Inc.,
e500mc Core Reference Manual, Rev. 0
09/2011

[DPAARM] Freescale Semiconductor, Inc.,
QorIQ Data Path Acceleration Architec-
ture (DPAA) Reference Manual, Rev. 2
11/2011

12



[P2040RM] Freescale Semiconductor, Inc.,
P2040 QorIQ Integrated Multicore Com-
munication Processor Family Reference
Manual, Rev. 0 11/2011

[P3041FS] Freescale Semiconductor, Inc.,
P3041 Fact Sheet, Rev. 3 08/2011

[P3041RM] Freescale Semiconductor, Inc.,
P3041 QorIQ Integrated Multicore Com-
munication Processor Family Reference
Manual, Rev. 0 11/2011

[P5020RM] Freescale Semiconductor, Inc.,
P5020 QorIQ Integrated Multicore Com-
munication Processor Family Reference
Manual, Rev. 0 11/2011

[RFC2698] J. Heinanen, Telia Finland, R.
Guerin A Two Rate Three Color Marker,
1999

[E500BSD] Rafał Jaworowski, FreeBSD on
high performance multi-core embedded
PowerPC systems, 2009

13


	Introduction
	Hardware
	e500mc core
	CoreNet Interconnect Fabric
	Peripheral Access Management Unit
	Platform Cache

	Data Path Acceleration Architecture
	Buffer and Queue Manager
	Frame Manager


	Software
	Toolchain
	Early kernel initialisation in locore.S
	QorIQ Data Path Acceleration Architecture
	NetCommSw drivers integration
	Frame Manager driver
	Datapath Triple-speed Ethernet Controller driver
	DPAA in newbus hierarchy

	SMP bring up
	DPAA in SMP environment


	Other peripherals bring up
	Current state and results
	Future work
	Conclusions
	Summary
	Acknowledgements
	Availability

