
Automated testing of the Curses library

Brett Lymn

Introduction

The curses library is a library that provides a terminal independent method of updating a terminal
screen. Italso provides optimisation of the screen update in an attempt to minimise the number of charac-
ters sent to the screen.It is a complex and subtle piece of software. Whenmaking modifications it is
always difficult to ensure that the modifications do not affect the operation of the curses library as a whole.
One method to ensure that unintended effect from changes are detected is to use some form of automated
testing to exercise the code. The NetBSD tree has a testing framework called atf(1) which is used to test
various portions of the code tree. One part of the tree that was not being tested was the curses library. This
paper describes the approach taken to perform testing of the curses library functions in a flexible and
straightforward manner.

Inception

Making modifications to the internals of
curses is alway difficult because changes in the
beheviour of the library may not be immediately
visible but, rather, may cause aberrations that are
difficult to reproduce in simple usage.Previously,
curses testing amounted to firing up a curses
based application such as vi(1) and seeing if
things "looked right" which, in reality, does not
exercise much of the curses library at all.
Another test method is writing a specific test-
frame to exercise some new code which is very
ad-hoc and specific for a single task.Once the
code was working to the creators liking the test
code was discarded which meant there was no on-
going testing of the functionality. Both these
approaches have resulted in bugs being intro-
duced which were not detected for some time and
when the bugs did appear they manifested them-
selves in environments that were extremely diffi-
cult to debug. Clearlythere was a need to have
some method to attempt to detect bugs or behav-
iour changes early to prevent such situations aris-
ing.

In 2007 a Google Summer of Code project
mentored by NetBSD created an automated test
framework which could perform automatic testing
of subsystems in a controlled manner. This
project was imported into the NetBSD tree and
work began on generating tests that could be run
as part of a regular build. Build servers have been

set up that continuously build and test the
NetBSD sources. These build servers can provide
fast feedback not only when a build is broken by a
commit but also if a commit causes the automated
tests to fail. By providing fast feedback the win-
dow of commits that could have caused the prob-
lem is much narrower which simplifies the task of
finding the modification that caused the problem.
It was clear that adding the curses library into the
automated test framework would be beneficial to
the project by ensuring that the curses library is
continuously tested and any regressions found
rapidly. The challenge was how to properly auto-
mate the testing of all the curses functionality.
Curses has functions that perform timed reads and
return errors if a character has not been seen
within a specified time out.It can also assemble
multiple input characters into a symbolic key rep-
resentation as the arrow keys, for example, tend to
send a multiple character string to represent an
arrow key press. Bothof these facilities make it
difficult to simply pipe a string of characters into
a test program because all the characters will
arrive at the input at once with no means of test-
ing a timeout. A program could be written to
pace the input to the test program but there is still
a matter of timing. In some cases there may need
to be multiple curses calls performed to set up the
correct state to test a particular function which
can add delays. The program performing the
input pacing has no indication of when the pro-
gram under test is ready to accept input.
Although atf has a timeout that will kill the mis-
behaving test the timeout is relatively long and

-2-

would cause long delays in the test run.Another
problem with simply redirecting input is that stdin
is not classified as a tty device so it behaves dif-
ferently to a tty device. Attemptingto set termi-
nal attributes will result in an error return which
will affect some curses calls causing them to
return errors.Similarly, capturing the output from
a curses program under test is problematic.Redi-
recting or piping the output to a file also results in
stdout not being a tty device which can affect the
output routines of curses introducing unwanted
output artifacts. Also,in some instances, curses
sets the input device characteristics using an ioctl
that waits for the output to be drained to ensure
output sent prior to the ioctl is not affected by the
change in device characteristics.This means that
output must be drained promptly otherwise the
program under test will stall.Finally, generating
test cases should be as simple and flexible as pos-
sible to allow the quick development of new tests
that are able to properly exercise the capabilities
of the curses library. To resolve the previously
mentioned difficulties it was decided to use a
pseudo-tty interface (pty) to provide a terminal
interface to the curses program under test.This
required a master program that could not only
provide input, if required, to the test program but
would also capture the output from the test pro-
gram in a timely manner to prevent the test pro-
gram from stalling. A possible approach would
be to develop a specific test program for each
facet of curses that needed to be tested but this
would involve writing a lot of repetitive code and
the problem of coordinating input would still
remain.

Implementation

To resolve all these difficulties it was
decided to use a single test program, called the
slave, this slave program is capable of running
any curses function with arguments provided by
the master program called the director. The slave
and director are connected via a pseudo-tty inter-
face to provide the correct tty semantics required
by curses. The two processes are also connected
by two pipes, one pipe allows the director to pass
commands and arguments to the slave for execu-
tion. Anotherpipe allows the slave to pass back
the return status for the function along with any
other return values. Thedirector does the bulk of
the work, it parses a test command file using a
simple interpreter to gather the required function
to run and its arguments and passes these on to
the slave. The director then wait for the slave to

complete the execution of the function. Since the
director and slave are running in lock-step the
director can have a very short timeout for the
command execution and so terminate a misbehav-
ing test quickly. The director language allows
input to be defined prior to the call that is going to
require it along with inter-character timing.The
director keeps a list of curses function that require
input and will provide the pre-defined input at the
pre-defined rate when a function requiring input is
executed. Returnvalues from the slave are read
from the return pipe and the values are either
saved or validated for expected content, any mis-
match is flagged as an error and the test is termi-
nated. Thedirector also captures any output from
the slave, originally the thought was to simply
capture and compare output data when routine
that caused screen output were called but it was
found that stalled the slave process due to curses
calling ioctls that waited for the output to drain
before making changes.Given this, the director
continuously drains output from the slave and
stores it in a dynamically allocated buffer for later
comparison. Theprevents the slave from stalling
due to output backlog.A directive in the director
language causes the director to compare a file
containing expected output against the buffered
slave output and, possibly, any pending slave out-
put. It is an error if there is insufficient slave out-
put but excess slave output is flagged as a warning
by the director. Once an output comparison has
been performed any excess data may be dis-
carded, depending on the comparison directive
used. Atest only passes if all return values for all
functions match their expected values and, if
appropriate, the expected output data matches the
data stream produced by the slave.

Test Language

The director test files are parsed using a
simple custom interpreter. The language allows
defining and later using variables, it is loosely
typed the type being determined at assigment
time. Thereare only two types supported, strings
(though there are a few string sub-types) and inte-
gers. Stringssupport a some character substitu-
tions to permit values useful to curses testing to
be performed, these substitutions are:

\e escape

\n newline

\\ the\ character

\nnn Thecharacter represented by the octal num-
ber nnn

-3-

Depending on what quotes enclose the string
defines how the string is treated.A plain, ordi-
nary, string is enclosed in double quotes ("), this
string will be null terminated.An array of char-
acters is enclosed in single quotes (’) this array
will not be null terminated and may contain any
character value. An array of the curses chtype
which is a pair of of bytes, the first byte being the
character attributes and the second being the
actual character is enclosed in back-ticks (‘).
Integers may be expressed in decimal (no prefix)
or hexadecimal (prefixed with 0x) Variables are
defined when first assigned, the only requirement
for a variable is that is start with a alphabetic
character. Once defined a variable can be refer-
ence by prefixing the variable name with a dollar
sign ($). Both integers and variables holding inte-
gers may be logically or’ed together by enclosing
the list in parentheses (()) and separating the list
members with a vertical bar (|).This is handy for
combining bit values such as character attributes.

As mentioned previously, the director uses
a simple interpreted language to determine the
steps involved in performing a test. The language
directives are:

assign
Assign a value to a variable

call Call a curses function, expect only one
return value

call2 Like call but expect two return values

call3 Like call but expect three return values

call4 Like call but expect four return values

check
Validate a variable against an expected
value

compare
Compare the output from the slave against
the contents of a file

comparend
The same as compare but don’t discard
excess output from the slave

delay
Define the inter-character delay to be
applied to an input string

include
include another command file.This is used
to reduce the amount of repetition in test
files by including commonly executed sec-
tions. Thereis a fixed, compile time, limit
to the number of nested include files.The
limit is arbitrary and set to 32 at the

moment. Itshould be noted that there is no
scoping of variables so they can be defined
and or modified in deeper nested includes
and be available at the top level test file and
all intermediates.

input
defines a string to be used for input when a
curses routine that reads input is called.

noinput
prevents the director from erroring if there
has not been input defined for a curses
input routine. Used if there is input pend-
ing already.

By using the above directives the testing of
most of the functions in curses can be achieved.
Initial conditions can be created by calling vari-
ous curses routines in the same manner as a real
curses application would. Oneimportant thing to
not is that the slave automatically calls the
initscr() function so it is not necessary for this call
to be included in any test. Thedirector expects a
fixed number of returns from the slave function
call depending on the call that was performed, the
number of returns from the slave is validated and
an error will be raised if there is a mismatch.
Returns can either be validated immediately or
assigned to a variable. For immediate validation
the following values can be used:

OK standardcurses success return

ERR standardcurses error return

NULL
a null pointer has been returned

NON_NULL
a pointer that is not null valued has been
returned

An integer including a logical OR

A string

For curses functions that return multiple values
the returns are listed to the left of the curses func-
tion in the call statement.The rules for this are
simple, any argument in a curses function that is a
pointer to a return is listed on the left hand side of
the function in the order they appear in the origi-
nal function argument list. Ordinary function
arguments are listed on the right hand side of the
curses function name.

Below is a sample of a test script that creates a
window and prints a message into it:

include start

-4-

call win1 newwin 2 5 2 5

check win1 NON_NULL

call OK wprintw $win1 “%s” “hello”

call OK wrefresh $win1

compare wprintw_refresh.chk

The first line includes another test file that
checks the curses start up sequence, this is a set of
characters that curses sends to the terminal to ini-
tialise it ready for use.This start sequence is
common to all tests so is a good candidate for
inclusion. Thesecond line is a call to the curses
newwin function, this call has one return, the
pointer to a window structure. This return is
saved in the variable win1 for later use. The
third line is a validation ofwin1 in this case it is
checked to ensure thatnewwin has not returned a
NULL pointer which would indicate an error.
Assuming that there is a valid pointer inwin1 the
director will execute the next line which is a call
to wprintw . Here the previously assigned
win1 is used as a parameter towprintw to
specify the window to print into along with the
other parameters for the function call.After the
wprintw call thewrefresh function is called
with the win1 parameter to update the terminal
with the results of the previous calls. The final
line compares the output stream of the test
sequence against the contents of the file
wprintw_refresh.chk . It should be noted
that the compare need not happen at the end of
the test, the output comparison can be performed
whenever there is a need to validate output and
can be done multiple times throughout the test.

To simplify the analysis of the output
stream from the slave the curses testframe uses a
special terminfo entry. Normally a terminal ter-
minfo entry has terminal specific escape
sequences to affect the behaviour of the terminal.
These escape sequences are difficult to read and
their meanings can be hard to determine.For the
purposes of testing the curses testframe uses a ter-
minfo entry that has capabilities that are mostly
the names of the capabilities themselves with a
few exceptions. Onof the exceptions are the
arrow and function keys so realistic sequences can
be used.Another exception is the capabilities that
move the cursor a single character, these are a sin-
gle character otherwise the curses optimisation
routines will not use them since it would deter-
mine that they would result in more characters
being output when compared to using an absolute
positioning capability. The major difficulty with
writing a test for curses is determining whether or

not the output is correct. As has been noted pre-
viously, the final screen appearance may be
deceptive as it may hide subtle errors or be ineffi-
cient in terms of the number of characters output.
For this reason it was decided that simply captur-
ing the current output was not a good strategy as
this may enshrine bugs in the code as being cor-
rect. To avoid this problem the output of each test
is analysed to ensure that the expected behaviour
is observed. To assist with this analysis, the test
director has a verbose mode that reports the out-
put stream in a readable format, the previously
mentioned readable version of the terminfo entry
also assists with interpreting the output.Using
the verbose mode of the test director the expected
output for a test can be written this is a painstak-
ing and tedious process but does mean that there
should be less bugs in the output. By starting
with tests that peform basic operations such as
initialising the curses library, create windows and
so forth a library of tests can be built that can then
be included into more complex tests which some-
what eases the burden of writing tests.

Currently, the curses testframe does not
cover wide characters mainly due to the chal-
lenges in properly representing a wide character
in the test language. Another avenue for further
exploration is the testing of other curses based
libraries. Librariessuch as libform and libmenu
should be able to be tested simply by adding the
support into the slave process.

Conclusion

The curses testframe has been integrated
into the NetBSD tests tree and work is progress-
ing, albeit slowly, on adding tests to exercise as
many of the curses functions as possible.Already
this work has shown fruits with a number of bugs
being found and fixed simply due to the fact of
the functions and output being closely scrutinised.
Once major portion of the curses functions are
covered by testing it opens the possiblity of
undertaking some major renovations to the curses
internals with the assurance that unintended
effects of the changes made will be detected and
the bugs fixed before the user community is
affected thus making NetBSD a more stable and
reliable platform.

