
The PBI format re-implemented for FreeBSD and PC-BSD

Kristofer Paul Moore

kris@pcbsd.org
PC-BSD Software / iXsystems

Abstract

The PBI format (Push Button Installer) has
been the default package management system for
PC-BSD going on 5+ years now. However as we
looked to the future it became apparent that it was
greatly needing an overhaul to both improve its
functionality, and expand its usage outside the
scope of just PC-BSD. Among the areas needing
improvement were how it dealt with identical
libraries between applications, the heavy
requirements from being implemented in QT/KDE,
and lack of a digital verification mechanism.

Starting in April of 2010, work began on re-
implementing the PBI format to address these
issues, and greatly expand upon its usefulness as a
package management system for both PC-BSD and
FreeBSD. From this work the pbi-manageri was
born as a subset of command-line functionality for
dealing with every aspect of PBIs, from building,
installing, distribution and advanced management.
The resulting format has been implemented 100%
in shell, allowing it to run virtually unmodified on a
fresh FreeBSD system, as well as be agnostic
towards which desktop a particular user may be
running in PC-BSD. Features such as digital
signature verification, intelligent library sharing,
repository management, bsdiff updating and others
have already been implemented, along with
improved QT4-based front-ends, which behave and
look almost identical to the legacy format. The end
result is a powerful package format which can be
used for traditional FreeBSD users as well as PC-
BSD running any window manager, or none for
that matter.

Introduction

When PC-BSD was first introduced back
in April of 2005, a key feature of it was the
introduction of the PBI (Push Button Installer)
system of package management. This format
was a new concept in the open-source arena at
that time, with applications no longer relying
upon a complex chain of library dependencies
and instead coming bundled with all the
necessary files in a single package. This format
has been in use for all subsequent versions of
PC-BSD though the 8.x series, making package
management a thing of simplicity. However the
format has begun to show its age, and there are a
number of key areas in which it could be
improved.

First among these is a solution to the
duplication of identical library files between
PBIs. When programs are packaged in the PBI
format, often they will make use of the same
libraries, such as X11, GTK, QT and more. The
PBI format allows programs to each use
different and possibly incompatible versions of
these libraries, however there are a lot of cases
there the libraries at 100% identical between
them. This results in library-duplication on both
the disk, and in memory at runtime. The re-
implemented PBI format now has a mechanism
for dealing with this, which can reclaim this
wasted space while still providing a degree of
separation between different PBIs.

Another issue facing the legacy PBI
format has been its original implementation.
When the PBI format was introduced it was
written mostly in QT4 with some KDE library
usage. While this has been fine on PC-BSD
through the 8.x series, which was based on KDE
/ QT, it presented a problem with PC-BSD 9.x,
which will offer choices between window-
managers. This legacy implementation also

prevented easy usage on FreeBSD, as a number of
prerequisites must now first be met to use PBIs,
which in most cases made it unfeasible. With the
new implementation of the PBI format, and its
management tools, this issue has been solved,
allowing it to be run on a native FreeBSD system,
and possibly ported to other BSDs as well.

In addition to these issues with the legacy
format, there have been a number of requests for
new features to make the format more useful going
forward. One such feature is the ability to digitally
“sign” a PBI file, allowing the user / manager to
verify that the binary is from the correct publisher,
and has not been compromised either from a
malicious entity, or simply corrupted during transit.
Another new feature is the ability to update a PBI
with small binary diff patches, which can reduce an
update download to less than 5% of its original
size. Also missing has been the ability to easily
manage a “repository” of PBIs, which can include
building the PBI from a FreeBSD port, distributing,
and managing application updates. In this paper we
will take a in-depth look at the fundamentals of
these legacy problems, along with how the PBI
reimplementation address them and expands the
format to make it more powerful for a wider
audience.

The PBI concept at its core

While the re-implementation of the PBI
format has greatly changed its inner workings, the
core concept has remained intact. This concept is
about finding a way to distribute binary packages,
which arrive in a self-contained format, that are
able to function without requiring messy
dependency resolution across the entire system. In
effect this concept is a departure from traditional
open-source package management.

Throughout the open-source desktop arena,
the norm has been to blur the line between
applications and the operating system. At any given
point the various packages installed on the system
makeup the users “Desktop”, but this is always in a
state of flux. By simply performing an upgrade of

some seemingly trivial top level application,
such as Firefox, there is always the risk that in
turn lower level libraries / applications may also
need to be updated. If one of these library
dependencies fails to update, or introduces new
bugs and regressions is it possible that other
applications, seemingly unrelated to the original
upgrade target could be negatively effected.
While package management systems have
become better about trying to track and fix these
issues, the underlying problem still exists and
every package upgrade becomes a potential
land-mine which can negatively effect a
desktops functionality. A graphical
representation of this can be seen in Figure 1
below.

Instead of simply writing another
packaging system which follows this model, the
PBI system rebuilds the walls between
applications, and the base system. By packaging
libraries and files together, an applications only
fixed dependency is the base version of the
operating system itself, so that a PBI built on
FreeBSD 9.0 series should function on all minor
versions in that branch, providing the ABI isn't
changed at some point in the process. This may
be somewhat of an oversimplification, since

Figure 1: Traditional open-source packaging
model.

some other prerequisites may still apply, such as X
applications needing a running X server to
communicate with, but from a library standpoint
applications are fully functional. This approach to
packaging eliminates the risks associated with
updating or changing installed applications, since
the target of the action can no longer modify the
system libraries. It also provides a greater degree of
freedom when building a desktop such as PC-BSD,
which is able to distribute a fixed set of packages
for a system's desktop environment, and let the user
determine when they wish to upgrade their system,
not simply be forced to simply because they wish
to run a newer version of Firefox or some other
application.

Intelligent sharing of libraries

While the bundling of applications together
with the required dependencies has worked to
eliminate the risk of installing / updating
applications causing system breakage, it has also
created a new issue of possible disk and memory
bloat. In the old implementation of the PBI format,
any group of applications may be including similar

or often identical libraries between them. While
disk-space is cheap enough to make this less of
an issue, it is still wasteful and is more of an
issue at application runtime, with each program
possibly loading identical copies of a library
into precious RAM space.

To solve this problem, the new PBI
format has implemented a new system of
sharing identical libraries via hard-links, in a
central location we will refer to as the “hash-
directory”. By using this technique we are able
to solve both problems at the same time. First by
using hard-links we are able to reclaim lost disk-
space since we only have a single copy of a
particular library version. In addition the system
will no longer need to load the same library into
memory at runtime, since the inode will match
for each file record.

The mechanism for using this new hash
directory is first started when a PBI is created.
When the PBI is built, the pbi-manager will
search through the common library directories
and build an index of the files, along with their
unique sha256 checksums. During this process,
files will be inspected for obvious unique
strings, such as dates or prefixes, and pruned
from the index, to help ensure that files in the
hash-directory are truly sharable. This index is
included in the final PBI file and upon
installation will be marked as ready for
inclusion to the hash-directory. From this point
the work is passed off to a new “pbid” daemon,
which tracks the installation / removal of PBIs,
is able to transparently merge libraries into the
tree and remove stale entries.

Within the hash-directory, files are
named according to the base filename, with the
sha256 checksum appended to the end. The
pbid daemon is able to quickly parse the
pending file indexes, looking for matches of
filename and checksum in the hash-directory.
When a match is found, the existing file in the
PBI's directory will be removed, and a hard-link
created in its place. Should the file not already
exist in the hash-directory, it will be created and
hard-linked back to the original location within

Figure 2: The separation between applications and
the base system using the PBI format.

the PBI. This means in effect, that as PBIs are
installed and the hash-directory grows, there will be
greater likelihood that a file will already exist in the
hash-directory, and the pbid program can safely
reclaim that space, substituting a hard-link in its
place.

Going in the opposite direction, during the
removal of a PBI and its files, the hash-directory
will be marked as “dirty”. When the pbid daemon
encounters this condition it will then do a quick
walk through of the hash-directory, looking at the
reference count for each file. When the reference
counter for a file has dropped to 1, that indicates
that it is not being used elsewhere and is now safe
for removal from the hash-directory.

Implementation and Requirements

Another issue which had to be corrected for
the new PBI implementation was that of its own
requirements. Historically the PBI format was
written in C++, using a variety of QT and KDE
libraries. While this was a workable solution for
PC-BSD up to the 8.x series, it made it very
difficult to use PBIs on traditional FreeBSD and the
upcoming PC-BSD 9 series, which no longer
provides KDE standard on all installations. Each
PBI also contained the installer mechanism built-in
to the archive file, which made it difficult to
maintain backwards compatibility when moving to
systems which were built upon newer revisions of
QT/KDE.

With this problem in mind it made much
more sense to implement the PBI tool-chain in a
way which did not force the end-user to have a
particular version of a library(s). Using an
interpreted language, such as shell, and only
relying on FreeBSD base system commands was
the logical choice, completely removing the PBI
system from a clutter of its own dependencies.

This is an important choice for several
reasons. First, it makes the PBI format useful as a
binary package management system, on an out-of-
box FreeBSD installation, even without having X
installed. Second it allows desktop users to utilize

the PBI format, agnostic towards whatever
particular desktop manager they have chosen to
run, as we have done with PC-BSD 9. Also by
using the freedesktop.org XDG specificationsii
for desktop icons, mime types, and menu
entries, the PBI re-implementation is now able
to manage the installation and removal of these
for a variety of XDG compliant desktops.

Command-line functionality

A related weakness to the QT/KDE
implementation of the legacy PBI format was its
over-reliance upon GUI tools and utilities for
PBI installation and management. While a few
basic command-line utilities were provided after
the initial release of the PBI format, they still
could only interact with a very basic sub-set of
PBI features. Among others, there was no
command-line line ability to update or search
for PBIs to install, which greatly hindered the
usefulness of the original implementation in a
native FreeBSD environment.

With the reimplementation of the PBI
format being 100% in shell, this has allowed all
functionality to now be utilized directly from the
command-line. In PC-BSD specifically, any
GUI tools are simply front-ends to their
command-line equivalents. The shell code of the
new PBI tools is entirely contained within a
single file, named pbi-manageriii, however due
to the large scope of the project, a number of
commands have been created to access
particular features of the script. In order to
minimize the learning curve for these commands
some names and flags have been copied from
FreeBSD's built-in package utilities. Lets take a
closer look at some of these new commands:

pbi_add

This command is used to perform a
number of actions relating to adding or
installing a PBI on a system. Some important
flags for it are:

-i Display PBI build information, digital

signature and more.
--checkscript Display any installation /

removal scripts included with this PBI
-r Fetch the PBI file and install from a

remote archive

pbi_info

The pbi_info command can be used to display
information about the PBIs installed on the system.
It also provides a '-i' flag, which can be used to
display a listing of available PBIs from it's known
repository index files

pbi_update

Checking for updates, and updating a/all
PBIs is performed through the pbi_update
command. The command provides options to
generate a listing of all available updates,
automatically update PBIs, or update a specific
application.

Digital Verification of PBIs

One often requested feature for PBIs has
been the ability to digitally “sign” and then verify
these signatures before installation. This can be
used to ensure that the PBI contents have not been
corrupted or tampered with from the time of
building, until actual installation on the end-users
system. This feature is standard in the new PBI
format, and also an integral part of how we link a
specific PBI to a target repository.

For digital signing of files, the PBI system
uses the openssliv command-line utility, which is
included in the FreeBSD base system. This
command can be used to generate the private /
public keypair, as well as perform the signing and
verification process. After creating a new set of
private / public keys, the private key can be used
with the pbi_makeport and pbi_create commands
to sign critical portions of the resulting PBI file.
Any installation and removal scripts are signed, as
well as the checksum of the PBI archive tar-ball.
These files and signatures are then stored in the

header of a PBI file, which allows quick
verification of signatures later on. The public
key is used for verification of signatures, and is
tied into the repository management, which we
will be taking a closer look at in the next
section.

PBI Distribution and Repositories

Another new feature added by the PBI
reimplementation is the framework for
distributing and updating PBIs through the use
of PBI repositories. With the pbi_makerepo
command, it is possible to create a small
repository file (.rpo), which can be distributed to
end users for registration of the repository on
their system. A repository is made up of several
key values:

• Description
• Public Key
• Mirror URL
• Index URL

The description field is what most end-
users will see when looking at their list of
installed repositories, such as “PC-BSD PBI
Repository”. The public key is from the openssl
key pair created and being used to sign PBIs
made for this repository. The Mirror URL would
be the master URL for downloading PBI files
and updates. Lastly the Index URL is used to
specify the location of the repository INDEX
file, which we will take a further look into
below.

A repository INDEX is a file the pbi-
manager uses in a variety of tasks, such as
checking for updates, searching for new PBIs to
add, and providing listings of available PBIs on
a repository. Normally it is automatically
downloaded by the pbid daemon on a daily
basis and used mainly as a way to stay updated
with the latest versions of applications. Within
the index are a variety of fields for PBIs, such as
names, versions, checksums, architectures and
more. Repository managers are also provided
with a command pbi_indextool which lets them

easily add / remove entries from their INDEX for
publishing. Using the repository tools, along with
commands for building PBIs, it is now possible to
run an entire distribution network from a native
FreeBSD system with no ports installed.

Binary Patching / Updating

Over the past several years of using the
legacy PBI format there have been many requests
for a way to shrink the amount of data downloaded
for updating. Typically whenever a PBI update was
issued, it would require the client to re-download
the entire archive for installation, which due to the
dependencies being included, can quickly grow to a
non-trival size. A number of solutions have been
experimented with during the development of the
new PBI format and the current solution of using
binary patching through the bsdiffv / bspatch
commands was implemented. Instead of requiring
the re-download of a full PBI file, updating can
now be performed through a much smaller binary
patch file (.pbp). In some cases this patch file may
be less than .05% of the original PBI size! This
patch file contains an archive of binary differences
produced by the bsdiff command, updated hash-
directory listings, removed files list, and new files.
The resulting .pbp file can also be digitally signed
to ensure the legitimacy of the contents. In order to
support this method of binary patching, a couple of
new command-line utilities have been created:

pbi_makepatch

This command is used in the creation of a
new Push Button Patch (.pbp) file. In requires two
PBI files, both of the same application and
architecture but different versions. Both of the PBI
files will be unpacked and the contents of them will
be inspected. Any files which have been removed
or added to the newer PBI will be recorded, and
then each file will be inspected to determine if it
has changed in any way between the versions. If
the file has been modified, then bsdiff is run to
generate a differences patch between the two.
These patch files are then saved, along with some
header information into the resulting .pbp file.

pbi_patch

This command is used for applying a
PBI binary patch file (.pbp) to upgrade an
installed application to a newer version. It has a
number of flags similar to pbi_add, for viewing
information about the PBI, checking scripts,
digital signatures and more. When starting the
patching process, some basic checks are first
done to ensure this patch is intended for the
version of the PBI installed on disk. If these
checks pass, then the patch is extracted, and files
updated using the bspatch command. During
this process checks are performed on each file,
and if it is hard-linked to a shared file in the
hash-directory, then steps are taken to unlink
and update the file, before trying to merge it
back into the hash-directory.

Building a PBI

In the previous iteration of the PBI
format, a couple of separate tools were available
which handled the creation aspect of
applications. The 'PBI Builder' provided a
mechanism for compiling ports into workable
PBIs via the command-line. Another
application, the 'PBI Creator' was also available,
which provided a GUI for generating simple
PBI's without handling the port building
structure.

The functionality of both of these tools
have been built directly into the pbi-manager,
via the pbi_autobuild, pbi_makeport and
pbi_create commands. By having these
commands built in, it is easy for any person to
start building PBIs, or even run large batch
builds to convert FreeBSD ports into PBI files.
Let us take a closer look at these commands and
their specific functionality.

pbi_makeport

Administrators and users wanting to
build their own PBI files from a FreeBSD port

will find pbi_makeport command very useful. By
using this single command, it is possible to perform
a fresh build of a target port, its related
dependencies and bundle them together into a final
PBI file. Upon the first run of the command, it will
start by building a fresh buildworld / sandbox
environment from the appropriate FreeBSD
sources. Once this process is finished it will be
saved for future builds, and extracted into a clean
chroot environment in which to perform the various
port make steps.

Because each PBI is built with a unique
PREFIX, a couple of special actions are taken
within the clean chroot environment before starting
the port compiles. First a couple of make options
are set to automate the build, and specify a correct
PBI prefix:

BATCH=yes
PREFIX=/usr/local/pbi/<appname>-<arch>

In addition to setting make options, the new
prefix directory is created as a symbolic link back
to /usr/local. This step is important, since many
ports in the FreeBSD ports tree do not like to be
compiled out of their default /usr/local prefix, but
will still function properly at runtime. At this point
the build is started of the target port, which builds it
and all its dependencies unique to this PREFIX. If
the port build finishes successfully then the
package and its dependencies are analyzed and any
build-specific ports are removed at this point.

Now the PBI creation process is started,
first by analyzing libraries / files for potential hash-
directory candidates and generating a list of
matches. Next the target ports file-listing is used to
identify executables, libraries, and other files which
will need to be sym-linked back into the /usr/local
directory at installation. This step is important to
ensure that executables end up in the users PATH
and libraries can be found by other programs.
Finally the entire PREFIX directory is saved into a
compressed tar archive, PBI information is saved
into a header file, digital signatures are created and
the final .pbi file is produced.

pbi_autobuild

The pbi_autobuild command provides
an easy to use framework for maintaining a tree
of PBIs which are automatically rebuilt when
the underlying FreeBSD port is updated or when
the administrator manually bumps the rebuild
trigger. It provides flags to enable a variety of
options such as digital key signing, automatic
creation of binary patch files for new PBIs,
pruning and more.

pbi_create

The pbi_create command can be used to
manually create a PBI file from a variety of
sources. It is similar to pbi_makeport, in that it
creates a PBI file from a target directory, but
without the port building magic. It can be used
as a way to manually build PBI files without
using an underlying ports infrastructure and still
end up with a valid PBI which is digitally
signed. In addition it also supports re-packaging
of an already installed application, back to a PBI
file.

Conclusion

The re-implementation of the PBI format
has preserved many of the core concepts present
in the original specification. It still provides a
binary package system, which eliminates the
need to maintain messy dependency tables. We
have taken a look at some of the specific
improvements to help solve the disk and RAM
bloat from duplication of identical files, digital
verification, repository management and more.
By switching the PBI tool-chain to a shell-based
environment the doors have been flung open to
allow all FreeBSD users access to using PBIs on
their desktop and servers. For the release of PC-
BSD 9.0 later in 2011 this reimplementation will
become the default, allowing users to run a
variety of different window-managers and still
maintain a cohesive package management
experience.

i http://wiki.pcbsd.org/index.php/PBI_Manager
ii http://www.freedesktop.org/wiki/Specifications/desktop-entry-spec
iii http://trac.pcbsd.org/browser/pcbsd/current/src-sh/pbi-manager/
iv http://www.openssl.org/
v http://www.freebsd.org/cgi/man.cgi?query=bsdiff&apropos=0&sektion=0&manpath=FreeBSD+8.1-

RELEASE&format=html

http://wiki.pcbsd.org/index.php/PBI_Manager
http://www.freebsd.org/cgi/man.cgi?query=bsdiff&apropos=0&sektion=0&manpath=FreeBSD+8.1-RELEASE&format=html
http://www.freebsd.org/cgi/man.cgi?query=bsdiff&apropos=0&sektion=0&manpath=FreeBSD+8.1-RELEASE&format=html
http://www.openssl.org/
http://trac.pcbsd.org/browser/pcbsd/current/src-sh/pbi-manager/
http://www.freedesktop.org/wiki/Specifications/desktop-entry-spec

