
Flattened Device Trees for Embedded FreeBSD

Rafał Jaworowski
Semihalf, The FreeBSD Project

raj@{semihalf.com, freebsd.org}

Abstract

This paper describes the development
work on providing FreeBSD with the ability to
use Flattened Device Tree (FDT) technology,
which allows for describing hardware resources
of a computer system and their dependencies
in a platform-neutral and portable way.

Configuration data which cannot be self
discovered at boot-time, have to be supplied
from an external source. The concept of flat-
tened device trees is a platform and archi-
tecture independent approach to resolve such
problems. The concept is inherited from Open
Firmware IEEE 1275 device-tree notion, and
has been successfully adopted by the embedded
industry.

1 Introduction

In embedded world there is a great vari-
ety of systems based on similar silicon chips,
but designed into custom boards and devices,
where connections of individual components are
different and there are no conventions or rules,
even across members of the same family of
products, for the interconnections layout and
resources allocation. Furthermore, some buses
and interconnects are not self-enumerable by
definition (unlike PCI or USB), and there has
to be some prior knowledge about how they are
connected and what their unique identification
is. Some of the examples of typical problems
are the following:

• Memory layout (address offsets/sizes spec-
ification)

• Assignment of resources and identifica-

tion of non-enumerable devices (I2C, SPI
buses, internal on-chip resources)

• Network MAC-PHY binding

• Interrupts hierarchy and routing

• GPIO / multi-purpose pin routing and as-
signment

The problem is that very often embed-
ded systems early-stage bootloaders tend to be
simple and do not expose information like the
above to the operating system kernel. The con-
cept of a flattened device tree (FDT) is an
established and mature way of handling such
problems. Among other deployments it has
been adopted as a basis for Power.org’s embed-
ded platform reference specification [EPAPR].

The idea is inherited from Open Firmware
(OF) IEEE 1275 device-tree notion (part of the
regular Open Firmware implementation), but it
allows for using the device tree mechanism on
any system (not based on OF):

• Hardware platform resources are manually
described in a human readable text source
format, where all non self-enumerating info
is gathered

• This source description is converted (com-
piled) into a binary object (a flattened de-
vice tree blob), which is passed to the ker-
nel at boot time

• The kernel (driver) learns about hardware
resources details and dependencies from
this [externally supplied] blob, which elim-
inates the need for embedding any info

about the underlying platform hardware
resources in the kernel

• The flattened device tree mechanism in
principle does not depend on any partic-
ular first-stage bootloader or firmware fea-
tures. The only overall requirement for the
environment is to provide a complete de-
vice tree description to the kernel

With such approach the operating sys-
tem kernel, in particular device drivers, but
also other low-level routines, can be freed from
any a priori knowledge about the hardware re-
sources underneath, and can be made flexible
and scalable depending only on the externally
supplied configuration data.

2 Definitions

The flattened device tree technology is as-
sociated with is a comprehensive environment,
so before further discussion we explain the ma-
jor entities.

2.1 Device tree source (DTS)

The device tree source is a text file which
describes hardware resources of a computer sys-
tem in a human-readable form. Example be-
low shows a device tree source snippet featur-
ing description of all major components (CPU,
memory, system-on-chip peripherals, IRQ as-
signments etc.) as device tree nodes and their
properties:

...
cpus {

#address-cells = <1>;
#size-cells = <0>;

PowerPC,8555@0 {
device_type = "cpu";
reg = <0x0>;
d-cache-line-size = <32>;
i-cache-line-size = <32>;
d-cache-size = <0x8000>;
i-cache-size = <0x8000>;
timebase-frequency = <0>;
bus-frequency = <0>;
clock-frequency = <0>;
next-level-cache = <&L2>;

};
};

memory {
device_type = "memory";
reg = <0x0 0x8000000>;

};

soc8555@e0000000 {
#address-cells = <1>;
#size-cells = <1>;
device_type = "soc";
compatible = "simple-bus";
ranges = <0x0 0xe0000000 0x100000>;
bus-frequency = <0>;

i2c@3000 {
#address-cells = <1>;
#size-cells = <0>;
cell-index = <0>;
compatible = "fsl-i2c";
reg = <0x3000 0x100>;
interrupts = <43 2>;
interrupt-parent = <&mpic>;
dfsrr;

};

enet0: ethernet@24000 {
#address-cells = <1>;
#size-cells = <1>;
cell-index = <0>;
device_type = "network";
model = "TSEC";
compatible = "gianfar";
reg = <0x24000 0x1000>;
ranges = <0x0 0x24000 0x1000>;
local-mac-address = [00 00 00 00 00 00];
interrupts = <29 2 30 2 34 2>;
interrupt-parent = <&mpic>;
tbi-handle = <&tbi0>;
phy-handle = <&phy0>;

};
...

In FreeBSD the default location for the
DTS files is sys/boot/fdt/dts directory of the
source tree.

2.2 Device tree blob (DTB)

The textual device tree description (DTS
file) is first converted (compiled) into a binary
object (the device tree blob) i.e. the DTB,

2

which is handed over to the final consumer (typ-
ically kernel) for parsing and processing of its
contents.

2.3 Device tree compiler (DTC)

A stand-alone tool executed on the host,
which transforms (compiles) a textual descrip-
tion of a device tree (DTS) into a binary object
(DTB).

2.4 Device tree bindings

While the device tree textual description
and the binary object are media to convey the
hardware configuration info, an actual mean-
ing of the contents are driven by the device
tree bindings. They are certain conventions
describing definitions (encoding) of particular
nodes in a device tree and their properties, al-
lowed values, ranges and so on. Such reference
conventions provide the legacy Open Firmware
bindings, further supplemented by the ePAPR
specification [EPAPR].

- wspomniec o FreeBSD-specific

3 Integration with FreeBSD

Since the FDT framework is composed
of a number of various elements, the develop-
ment work towards bringing this technology to
the FreeBSD environment also spans several
aspects. The major areas involved with the
project are the following, and they will be dis-
cussed in greater details further on:

• Tools enabling the technology (dtc, libfdt)

• loader(8) support

• FreeBSD kernel support

• Long term development and maintenance
of the device tree sources (DTS) for indi-
vidual platforms

3.1 Baseline code

The starting point for this development
was publicly available source code of the
FreeBSD 9-CURRENT branch as of November

2009 timeframe. During development it was a
regular practice to re-sync with an up-to-date
baseline.

3.2 Build environment

A non modified tool chain bundled with
the base FreeBSD (GNU binutils 2.15 and gcc
4.2.1) was used for this project.

4 Tools

When considering FDT support on any
platform there are needed basic building blocks
and the primary element is a device tree com-
piler tool, which lets transform the textual de-
scription into a binary object used by an end-
consumer.

Since there is available a ready to use im-
plementation of such a compiler, namely the
dtc, developed and maintained by David Gib-
son and Jon Loeliger, it was natural to reuse
this existing 3rd party tool for the project
[DTCGIT].

Moreover, part of the dtc package is
a stand-alone supporting library, libfdt, which
greatly helps integrate parsing and processing
of a device tree blob into any piece of software,
which is supposed to retrieve data from the de-
vice tree. In case of FreeBSD environment, the
libfdt library is used by the following entities:

• dtc user space tool

• last stage bootloader i.e. loader(8)

• FreeBSD kernel

More information about the dtc, libfdt,
device tree blob format and other low-level de-
tails can be found in the [DTCPAPER].

Therefore, as a preliminary step for the
development described in this paper, the dtc
package was integrated with base FreeBSD
source tree, so that both compiler and the li-
brary could be built as any other element of
the system. A new build knob was added to
control building of these tools when FDT sup-
port is enabled:

3

WITH_FDT

The typical way of building the de-
vice tree compiler is supplying the above set-
ting during buildworld procedure, either via
src.conf(5) or manually:

make buildworld -DWITH_FDT

Note the dtc tool has to be built at boot-
strap tools building stage of the buildworld pro-
cedure, because the host is not guaranteed to
have the compiler installed and readily avail-
able. This is similar to other elementary tools
required during further stages of the build pro-
cess (like config, make and others).

5 loader(8)

Systems with regular booting environ-
ment1 include the native FreeBSD last-stage
boot loader i.e. loader(8), which is responsible
for preparing the environment for the FreeBSD
kernel before it is loaded and started.

Considering FDT support for such sys-
tems, loader(8) has been extended with the
ability to load and manage the device tree blob,
and finally hand it over to the kernel. The de-
vice tree cannot be synthesized by the loader(8)
itself in run-time, because the loader is very
much unaware of the hardware it is running on.
The device tree blob has to be created before-
hand and it is retrieved from permanent storage
(typically /boot directory) at boot time.

In order to leverage existing FreeBSD
booting environment, the device tree blobs are
treated as raw binary kernel modules, which
can be loaded and unloaded before the kernel
is booted, in a similar way that any other ker-
nel modules work. For example (note the -t dtb
type specification of the module)):

loader> load -t dtb boot/mpc8555cds.dtb

loader> lsmod
...

1For discussion about booting scenarios without
loader(8) see 6.5.1

0x162f92c: boot/mpc8555cds.dtb (dtb, 0x1eb2)
loader>

In addition to using a generic mechanism
for loading a device tree blob, a new dedicated
loader command, fdt, has been added, to allow
users inspect and manipulate the loaded blob
in a number of ways. The list of available sub-
commands is the following:

fdt cd
fdt header
fdt ls
fdt mknode
fdt mkprop
fdt prop
fdt pwd
fdt rm

Detailed discussion of the command usage
can be found in loader(8) manual, but as could
be inferred from the subcommands’ names the
user can navigate through the device tree hier-
archy, as well as change its contents on demand
(add, delete new nodes and properties, modify
exisiting ones), for example:

loader> fdt ls

/aliases
/cpus
/cpus/PowerPC,8555@0
/memory
/soc8555@e0000000
/soc8555@e0000000/ecm-law@0
/soc8555@e0000000/ecm@1000
/soc8555@e0000000/memory-controller@2000
/soc8555@e0000000/l2-cache-controller@20000
/soc8555@e0000000/i2c@3000
/soc8555@e0000000/dma@21300
/soc8555@e0000000/dma@21300/dma-channel@0
/soc8555@e0000000/dma@21300/dma-channel@80
/soc8555@e0000000/dma@21300/dma-channel@100
/soc8555@e0000000/dma@21300/dma-channel@180
/soc8555@e0000000/ethernet@24000
...
/soc8555@e0000000/ethernet@25000
...
/soc8555@e0000000/serial@4500
/soc8555@e0000000/serial@4600

4

/soc8555@e0000000/crypto@30000
/soc8555@e0000000/pic@40000
...
/pci@e0008000
/pci@e0008000/i8259@19000
/pci@e0009000
loader>

As mentioned, FDT support in the
FreeBSD loader primarily relies on the libfdt
component, which provides basic routines for
traversing the the device tree blob and manag-
ing its contents in memory. Built on this foun-
dation is functionality of all fdt loader subcom-
mands.

6 FreeBSD kernel

Because of the many different aspects of
the FDT environment, bringing support for this
functionality to the FreeBSD kernel is a chal-
lenging and complex undertaking spanning sev-
eral subsystems. Some of the more prominent
areas are highlighted below:

• Early system initialization rework to a de-
vice tree-driven model

• Integration with an existing Open
Firmware framework

• Integration with FreeBSD native newbus
device drivers hierarchy

• Conversion of individual drivers to the new
conventions

- modes of booting - stand alone blob with
loader - statically embedded blob into kernel
image (no loader)

6.1 Basic functionality

The groundwork for the flattened de-
vice tree support in the kernel was integrat-
ing the libfdt library and making it part of
the FreeBSD kernel image, so that data can
be retrieved from the device tree and used dur-
ing kernel bootstrap. This step was straight-
forward because libfdt is portable and easy to
embed in other code.

6.2 Open Firmware infrastructure

FreeBSD PowerPC 2 and Sparc64 archi-
tecture support code has been using genuine3

Open Firmware services from the very begin-
ning, since this (OF) is a common case of early-
stage boot loader found on these platforms.

Flattened device tree is inherited from
Open Firmware device-tree notion and shares
many of its design principles, so there was an
incentive to reuse existing OF platform code
of the FreeBSD kernel. Open Firmware how-
ever is primarily a specification, implemented
by a number of vendors, and some of the in-
ternal differences have to be accounted for in
the consumer code. This led to development
of generic, virtualized interfaces in the kernel
providing uniform access to OF services and
resources regardless of the internal implemen-
tation differences:

• OFW_* interface, provides low-level ac-
cess to Open Firmware API calls. The in-
terface hides from the user such implemen-
tation details like CPU mode of operation
while executing OF code (as opposed to
the consumer code) etc.

• OFW_BUS_* interface, allows for easier
retrieval of standard device node proper-
ties and translates for the user OF device
tree representation to internal newbus de-
vice kernel objects.

Part of the OF infrastructure is also the
/dev/openfirm character device, which allows
user space access to Open Firmware services.

FDT support infrastructure plugs into the
OF framework in the following way:

• Provides back-end implementation of
2Using OF on PowerPC mostly concerns legacy Ap-

ple Macintosh systems. The emebedded PowerPC sys-
tems very often use other boot loaders like U-Boot, for
which FDT is a viable technique to provide kernel with
hardware configuration data.

3Since some aspects of FDT technology is derived
from or directly reusing OF concepts, we make an ex-
plicit distinction between these two approaches when-
ever important.

5

OFW_* methods for the device-tree re-
trieval, which use DTB underneath as
a data source4.

• Uses the OFW_BUS_* methods to sim-
plify nodes and properties management in
higher level FDT infrastructure code.

In effect, from the consumer (client code)
perspective, an FDT-driven system appeals as
a genuine Open Firmware as far as device tree
data retrieval is concerned.

As a demonstration of the powerful inter-
face virtualization approach, let’s bring an ex-
isting user space program, ofwdump(8), which
allows for enumeration of the OF device tree
hierarchy: it works without modifications on
FDT-enabled platforms, without even knowing
there is no genuine OF underneath:

ofwdump -a
Node 0xc06309a0:

Node 0xc0630a04: aliases
Node 0xc0630b04: cpus

Node 0xc0630b30: PowerPC,8555@0
Node 0xc0630bec: memory
Node 0xc0630c24: soc8555@e0000000

Node 0xc0630cac: ecm-law@0
Node 0xc0630cfc: ecm@1000
...
Node 0xc0630ea4: i2c@3000
Node 0xc0630f40: dma@21300

Node 0xc0630fd8: dma-channel@0
Node 0xc0631074: dma-channel@80
Node 0xc0631110: dma-channel@100
Node 0xc06311ac: dma-channel@180

Node 0xc063124c: ethernet@24000
Node 0xc0631360: mdio@520

Node 0xc06313c4: ethernet-phy@0
Node 0xc063143c: ethernet-phy@1
Node 0xc06314b4: tbi-phy@11

Node 0xc0631504: ethernet@25000
Node 0xc0631618: mdio@520

Node 0xc0631678: tbi-phy@11
Node 0xc06316c8: serial@4500
Node 0xc063175c: serial@4600
Node 0xc06317f0: crypto@30000
Node 0xc0631898: pic@40000

4Note that non-device-tree OFW_* methods (e.g.
device I/O, memory management) from this interface
are not implemented and return error when called.

Node 0xc0631930: cpm@919c0
Node 0xc06319a8: muram@80000

Node 0xc06319f0: data@0
Node 0xc0631a40: brg@919f0
Node 0xc0631aa8: pic@90c00

Node 0xc0631b58: pci@e0008000
Node 0xc0631fa8: i8259@19000

Node 0xc0632068: pci@e0009000
#

6.3 Integration with newbus

The FreeBSD kernel infrastructure for
managing device drivers is an object-oriented
framework called newbus. It models hardware
peripherals of a computer system as a hierar-
chical tree with an abstract root device on top
and many subordinate entities below. Hard-
ware components are represented by object in-
stances, which have drivers attached to them
during kernel bootstrap.

It should be noted that newbus infras-
tructure is fundamental to device drivers in-
terface definition of FreeBSD and any signif-
icant changes to its core functionality would
have thorough impact on much of the kernel
code. Therefore, bringing flattened device tree
as a source of hardware description informa-
tion for the FreeBSD kernel, requires smooth
integration with newbus primitives and overall
model.

Prior to the development described in this
paper, various embedded FreeBSD architecture
support implementations typically rolled out
their own newbus-based representation of in-
tegrated peripherals, for example obio(4), ocp-
bus(4), mbus(4) and so on.

In order to reduce these many simi-
lar (and incompatible) approaches, as part of
the FDT kernel infrastructure, we introduce
two generic and common replacement entities.
They are both newbus abstract bus drivers,
which do not represent any physical elements,
but provide a connection between newbus and
OF-like device tree model:

• fdtbus(4)

• simplebus(4)

6

Figure 1 illustrates the concept of device
drivers hierarchy, with fdtbus and simplebus
entities visible in the middle.

root

nexus

lbc

fdtbus

opic

uart

tsec

pci

...
i2c

...

simplebus

Figure 1: Device drivers hierarchy

This is directly reflected in the kernel view of
the devices organization:

devinfo
nexus0

fdtbus0
lbc0

cfi0
cfid0

simplebus0
i2c0

iicbus0
iic0

...
tsec0

miibus0
ciphy0

...
uart0
uart1
sec0
openpic0

pcib0
pci0

pcib1
pci2

pcib2
pcib3

pci1
em0

#

6.3.1 fdtbus(4)

This abstract bus driver, newly intro-
duced as part of the project, is the focal point of
integration between flattened device tree world
and FreeBSD newbus scheme. It is a direct re-
placement for various existing bus drivers rep-
resenting peripherals integrated on chip. Its
main responsibilities are:

• Creating newbus children that reflect FDT
nodes counterparts

• Managing IRQ resources

• Managing MEM, I/O resources

The fdtbus driver provides generic, com-
mon infrastructure for all FDT-oriented device
drivers. It iterates through the flattened device
tree and for each first-level node5:

• instantiates a newbus child representing
the node,

• retrieves resources info (memory ranges,
IRQs, etc.) from the device tree blob and
assigns to this newbus child in the form of
a FreeBSD-native device resource list.

6.3.2 simplebus(4)

This bus driver is dedicated for an
ePAPR-style „simple-bus” node [EPAPR],
which is an umbrella node grouping integrated
on-chip peripherals like interrupt controller,
connectivity controllers, accellerating engines
and so on.

Since the simplebus is akin to the fdtbus
in that it does not represent any physical en-
tity by itself, its driver is also generic and com-
mon for all nodes claiming ,simple-bus” com-
patibility. In a similar way it iterates over di-
rect descendats of the „simple-bus” node, in-
stantiates newbus children accordingly and as-
signs resources to them, which individual device
drivers can request during probing.

5descendants of the FDT root node

7

Note the simplebus does not manage de-
vice resources and passes through any requests
to the fdtbus layer.

6.4 Conversion of existing drivers

Besides providing the infrastructure
building blocks for FDT, the exisiting end
device drivers probe and attachment code
need to be adjusted to work with the new
conventions.

With fdtbus and simplebus in place6, end
device (non-bus) drivers can be made FDT-
compatible fairly straightforward. Resources
management does not change from the device
driver perspective, so the basic conversion steps
are the following:

1. Declare the driver as a child of the proper
bus driver, for example:

DRIVER_MODULE(openpic, simplebus,
openpic_fdt_driver,
openpic_devclass, 0, 0);

2. Have the probe routine check for compati-
ble property of the node, for example:

...
if (!ofw_bus_is_compatible(dev,

"chrp,open-pic"))
return (ENXIO);

...

The above are a minimal requirement, and ad-
ditional adjustments may be necessary depend-
ing on how much information a device driver
has to fetch from the FDT. However, in case
of simple device drivers it may be all that is
needed to migrate over to the FDT approach.

Bus drivers like PCI or other (localbus
type) are usually more difficult and non routine,
and hence it is not easy to provide a general
description of such cases, they are considered
outside the scope of this paper.

6and with the assumption the device tree data for a
particular system has already been prepared

6.5 Using FDT with FreeBSD

6.5.1 Modes of operation

When considering high-level FDT usage
scenarios there appear two basic modes of op-
eration, which depend on how the device tree
blob is handled on the way to the kernel:

• stand-alone DTB file (i.e. with loader(8))

• statically embedded DTB into kernel im-
age (no loader(8))

Since the first case was discussed in section 4
the details of the second scenario are described
below.

6.5.2 Statically embedded blob

Some of the embedded systems cannot
run the FreeBSD loader(8) either because it
is not feasible7 or not desired (for example to
shorten boot time).

In order for such cases to still benefit from
the FDT technology, the device tree blob has to
be included as integral part of the kernel image.
This way the kernel is self-contained as the de-
vice tree is buried within its data segment, and
it can be used for retrieval and processing ex-
actly as when it is supplied as a stand-alone file
by loader(8).

6.5.3 Kernel options

The primary option for enabling the FDT
support in the kernel is the following:

options FDT

It includes all low-level and infrastructure parts
of FDT kernel support, which primarily cover
the fdtbus(4) and simplebus(4) drivers, as well
as helper libfdt routines.

To specify a preferred (default) device
tree source (DTS) file for a given kernel use
the following build option:

7because the underlying firmware does not expose
any programmatic access to elementary operations such
as console, block device I/O or networking, which are
required for loader(8) to work

8

makeoptions FDT_DTS_FILE=board.dts

The indicated DTS file will be converted (com-
piled) into a binary form along with the ker-
nel itself (note the DTS file name is relative
to the default location of DTS sources i.e.
sys/boot/fdt/dts).

Additionally, in order to statically embed
a DTB file into a kernel image use the following
option:

options FDT_DTB_STATIC

Note this option requires a DTS file to be spec-
ified with the FDT_DTS_FILE makeoption.

6.6 Current support

6.6.1 Freescale MPC85xx

Among the early adopting platforms of
the FDT technology for FreeBSD was exist-
ing MPC85xx PowerPC8 support which covers
the family of Freescale PowerQUICC system-
on-chip devices. The legacy ocpbus(4) bus
driver representing integrated peripherals on
these systems was removed9, and instead the
generic FDT infrastructure (like fdtbus(4) and
simplebus(4) bus drivers) was used.

• DTS files for reference development sys-
tems (MPC8555CDS and MPC8572DS),
compliant with the ePAPR specification
[EPAPR], were provided by the silicon ven-
dor and were used for FreeBSD purposes
with only very minor adjustments and ex-
tensions.

• All existing FreeBSD drivers for MPC85xx
integrated peripherals were converted to
the FDT conventions (interrupt controller,
UART, Ethernet, crypto engine, PCI etc.)

6.6.2 Marvell Orion, Kirkwood,
Discovery Innovation

In addition to the embedded PowerPC ex-
amples described in previous section, a familiy

8based on Book-E compatible E500 core
9and the static hard-coded configuration tables in

the kernel

of ARM-based system-on-chip devices were also
brought to run FreeBSD with the FDT conven-
tion during the course of this project. Simil-
iarly, an existing legacy representation of inte-
grated peripherals and resources, mbus(4), was
removed in favor of the FDT generic infrastruc-
ture and the newly introduced bus drivers.

• Since enabling FDT on ARM-based sys-
tem was a pioneer work (no other OS
was offering such support at the time of
this development10, important part of this
project was creating a set of DTS descrip-
tion files for all platforms based on Mar-
vell ARM, which are supported by current
FreeBSD.

• This covers for the following: Orion
(DB-88F5182, DB-88F5281), Kirkwood
(DB-88F6281, RD-88F6281, SheevaPlug)
and Discovery Innovation (DB-78100).

• The introduced DTS files are reusing exist-
ing ePAPR bindings definitions, but there
were some new device tree bindings pro-
posed as well for device drivers and areas
not previously covered by the ePAPR spec-
ification [EPAPR].

• All existing FreeBSD drivers for Marvell
integrated peripherals were converted to
the FDT conventions.

7 Summary

7.1 Benefits

The technology introduced by this project
brings several advantages to the embedded
FreeBSD world:

• Uniform and extensible way of rep-
resenting hardware devices compliant
with industry standards (ePAPR, Open
Firmware), independent of architecture
and platform (portable across ARM,
MIPS, PowerPC, possibly others).

10Q1 2010

9

• Allows for and encourages code sharing
and its reduction in long-term (as the com-
mon infrastructure is used by more and
more platforms in favor of the legacy, in-
compatible but similar solutions).

• Providing hardware configuration from ex-
ternal source allows for multi-platform ker-
nels (a single kernel image can be used with
many configurations and hardware plat-
form variations).

7.2 Cost

There are also some disadvantages, or
maintenance costs associated with the device
tree mechanism:

• Device tree compiler (dtc) package depen-
dency, which needs to be included in the
base source tree, followed by its mainte-
nance like importing and updates. This
seems not a significant obstacle though:
the dtc package is stable, without dynamic
development at the moment.

• Maintenance of device tree source (DTS)
files; this seems like a task similar to the
legacy device.hints(5) files maintenance
and handling.

8 Acknowledgments

I would like to thank the following people:

The FreeBSD Foundation for sponsoring
this development.

M. Warner Losh (The FreeBSD Project),
for being the technical reviewer for the project.

Phil Brownfield (Freescale), for help and
support with relicensing the MPC85xx device
tree source files.

Łukasz Wójcik and Michał Hajduk (both
Semihalf), for all the work on this project.

Nathan Whitehorn (The FreeBSD
Project), for the work on OF and OFW
interfaces, which allowed the FDT layer to
smoothly plug into the Open Firmware infras-
tructure and benefit from existing framework
and tools.

Work on this paper was sponsored by Semihalf.

9 Availability

The code described in this paper is, or will
soon be, available from the FreeBSD Project
Subversion repository, 9-CURRENT (HEAD)
branch, and later.

References

[ASOF] Josh Boyer, Grant Likely, A Symphony
of Flavours: Using the device tree to de-
scribe embedded hardware, Linux Sympo-
sium 2008, Ottawa

[EPAPR] Power.org, Inc., Standard for Em-
bedded Power ArchitectureTMPlatform Re-
quirements (ePAPR), Rev. 1.0, 23 July
2008

[DTCPAPER] David Gibson, Benjamin Her-
renschmidt, Device trees everywhere,
February 2006

[DTCGIT] David Gibson, Jon Loeliger,
The Device Tree Compiler source tree
http://git.jdl.com/gitweb/?p=dtc.git;a=summary

10

