
JBUILD – NEXT GENERATION BUILD
TOOL FOR FREEBSD

Craig Rodrigues

rodrigc@juniper.net / rodrigc@FreeBSD.org

BSDCan, May 2010

2 Copyright © 2009 Juniper Networks, Inc. www.juniper.net

OVERVIEW

 Brief introduction to build system in FreeBSD

 List some pain points in the current build system

 Describe the design and implementation of “jbuild” tool at Juniper

to attempt to solve some of these issues

3 Copyright © 2009 Juniper Networks, Inc. www.juniper.net

WHY DO PEOPLE LIKE TO BASE PRODUCTS ON BSD?

 BSD license works well for products

 Solid operating system

 Drivers available for lots of off the shelf hardware (storage,

network, CPU, etc.)

 Availability of tools (toolchains, scripting languages, etc.)

 Easy to extend or customize due to source code availability, and

also build system makes it easy to add new extensions to

codebase and integrate them

4 Copyright © 2009 Juniper Networks, Inc. www.juniper.net

FREEBSD BUILD SYSTEM

 /usr/bin/make is a utility in FreeBSD that is used to build software

 make checks dependencies, and executes actions if dependencies

are out of date

 in FreeBSD, make comes with a set of “makefile infrastructure”

files in /usr/share/mk, which contain common rules for building

programs (bsd.prog.mk), libraries (bsd.lib.mk). Other makefile

infrastructure exists for compiling kernels

 FreeBSD ports follows similar conventions, and has its “makefile

infrastructure” in /usr/ports

5 Copyright © 2009 Juniper Networks, Inc. www.juniper.net

EXAMPLE: MAKEFILE FOR LIBRT

LIB=rt

SHLIB_MAJOR= 1

CFLAGS+=-I${.CURDIR}/../libc/include -I${.CURDIR}

CFLAGS+=-Winline -Wall -g

SRCS+= aio.c mq.c sigev_thread.c timer.c

.include <bsd.lib.mk>

 BSD convention is to have average Makefiles used by users be very simple,

only defining variables

 bsd.lib.mk contains the logic for what rules to execute when dependencies are

out of data for compiling librt

 use of “makefile infrastucture” makes it easy to add new libraries

6 Copyright © 2009 Juniper Networks, Inc. www.juniper.net

COMMON USES OF FREEBSD BUILD SYSTEM

 make buildworld, make installworld

 Rebuild all of the userland from sources in /usr/src, and install them

 make buildkernel, make installkernel

 Rebuild kernel from sources in /usr/src, and install it

 This is commonly used by more advanced users who are

comfortable with upgrading a system by rebuilding it from source

7 Copyright © 2009 Juniper Networks, Inc. www.juniper.net

OTHER INTERESTING BUILD TARGETS

 make universe

 Builds world and kernel on all possible architectures (amd64 arm i386

ia64 pc98 powerpc sparc64 sun4v)

 FreeBSD Developers are supposed to use this to make sure they don’t

break other architectures

 make release

 Used to rebuild everything from sources, and then end up with

installation media (CD/DVD)

 FreeBSD release engineering team uses this to create installation

media available from FreeBSD.org ftp and web sites

8 Copyright © 2009 Juniper Networks, Inc. www.juniper.net

WHAT ARE SOME PAIN POINTS WITH THE CURRENT
SYSTEM?

 FreeBSD build system works quite well, but there are some

problems:

1. make universe takes a long time, so few developers use it. Less

commonly used architectures break, and are only noticed by

tinderbox systems

2. Parallel builds (make –j [n]) of buildworld/buildkernel, are not so

reliable, and are not the default. This prevents optimal use of multi-

cpu/multi-core systems and distributed systems for building.

3. Expressing more complex build dependencies requires a lot of

knowledge of build systems. For example, an IDL compiler can

generate .c and .h files, which can then be built into a library. This

library and all things which link against this library now depend on the

IDL compiler.

 Problems manifest as build breaks, or very long build times.

9 Copyright © 2009 Juniper Networks, Inc. www.juniper.net

IDEAS FOR INCREMENTAL IMPROVEMENTS TO MAKE

 Pain points in build are annoying for FreeBSD but tolerable.

 At Juniper, due to the size of the codebase, these problems are not

so tolerable.

 John Birrell had worked on build systems before, and had some

ideas to improve things at Juniper by making incremental

improvements in make:

 As make forks off processes during the build, the file accesses of these

processes could be traced. Makefile needs to specify explicit

dependencies (these .c files make up this library), but more complex

implicit dependencies can be captured by the tool and used during

the build.

 “makefile infrastructure” for better handling dependencies between

directories could be written, and help with improved parallel builds

10 Copyright © 2009 Juniper Networks, Inc. www.juniper.net

WHAT’S IN A NAME: JBUILD?

 Proof of concept project started in 2008

 Idea was to make modifications to make, but compile two binaries

from the same codebase, but use #ifdef preprocessor macros to

enable different logic in the binaries

1. make – binary would behave like existing make and not contain new

behaviors

2. build – binary would contain new behaviors, and read Buildfile, and

ignore Makefile. Buildfile syntax is identical to Makefile, but would

allow two build systems to coexist. This would allow for more flexibility

of prototyping and testing

 build conflicted with another internal Juniper tool, so jbuild was

chosen

11 Copyright © 2009 Juniper Networks, Inc. www.juniper.net

PROTOTYPE 1: JBUILD + DTRACE

 As jbuild forked processes, the pid of these processes was passed

to a buildmon server over IPC

 Buildmon then ran a DTrace pid provider to trace all file accesses

done by the process. Separate server required because DTrace

pid provider needed elevated privileges.

 Tracing information was provided by buildmon to jbuild

 As forked processes exited, information would be written out

jbuild buildmon

process

(1) pid = fork()

(2) trace(pid)

(3) provide traceinfo

12 Copyright © 2009 Juniper Networks, Inc. www.juniper.net

PROTOTYPE 1: ANALYSIS

 Tracing information was useful, and captured implicit dependencies

quite well.

 Update builds were very reliable, and would only build things that

changed.

 Under load, on FreeBSD 7, i386, the extensive use of DTrace pid

providers seemed to use lots of kernel memory. This led to serious

performance problems. At the time, we saw on mailing lists similar

reports of high kernel memory usage with ZFS on i386 FreeBSD.

John suspected that since DTrace and ZFS both came from Sun,

the way the code was written to use kernel memory was an issue

 Using a buildmon server posed problems (single point of failure,

possible security issues, potential problems with multiple users)

13 Copyright © 2009 Juniper Networks, Inc. www.juniper.net

PROTOTYPE 2: JBUILD + FILEMON KERNEL MODULE

 Tracing information from first prototype was useful, but overhead of

DTrace pid provider under load, plus problems with separate

buildmon server didn’t seem worth it

 filemon kernel module was written which implemented a clone

device which wrapped certain file system related syscalls (open,

read, write)

 Wrapper would log file syscall, then delegate to the real

implementation of the syscall

 This logging would replace the DTrace pid provider

14 Copyright © 2009 Juniper Networks, Inc. www.juniper.net

PROTOTYPE 2: FILEMON KERNEL MODULE

 As jbuild forks processes, it opens a descriptor on the /dev/filemon

device, and passes the pid to the device

 Syscalls of interest are logged, and tracing information is provided

back to jbuild

 jbuild uses this tracing information as part of dependency checking

 “jbuild –Q” turns off accessing /dev/filemon….we lose the tracing of

implicit dependencies, and jbuild behaves more like regular make

which depends on specification of explicit dependencies

jbuild filemon

process

(2),open(/dev/filemon), ioctl(FILEMON_SET_PID, pid)

(1) pid = fork()
(3) provide traceinfo

15 Copyright © 2009 Juniper Networks, Inc. www.juniper.net

PROTOTYPE 2: ANALYSIS

 filemon kernel module was very stable, and is what we currently

use

 Code is simple, and only traces a few syscalls of interest (file

system related ones, like open, read, write)

 Format of log file is the same as what DTrace pid provider gave,

allowing us to reuse the same code in jbuild for parsing the log file

16 Copyright © 2009 Juniper Networks, Inc. www.juniper.net

FILEMON OUTPUT

 For each target, built under obj, a log file is created, with a .meta

extension

 For example, src/lib/liby/main.c is compiled to

obj/i386/lib/liby/main.o, and obj/i386/lib/liby/main.o.meta is created

17 Copyright © 2009 Juniper Networks, Inc. www.juniper.net

DIRECTORY DEPENDENCIES AND PARALLEL BUILDS

 to allow a build to be more parallel (higher –j flags), we follow the

convention where one directory builds one final product, and then

we track dependencies between the directories

 For example:

 src/lib/libfoo/Buildfile builds libfoo.a library

 src/usr.bin/foo/Buildfile builds foo binary, and links against libfoo.a

 src/usr.bin/foo has a “directory dependency” on src/lib/libfoo, since

the library needs to be built before the binary

 Getting these directory dependencies right gets difficult in larger

build systems, but are very important for making a build more

parallel

18 Copyright © 2009 Juniper Networks, Inc. www.juniper.net

DIRECTORY DEPENDENCIES: JDIRDEP

 As targets are being built, log files from filemon will be written

 As the jbuild process exits, the log files which were just created

are parsed by jdirdep (a utility which is part of jbuild)

 jdirdep looks for files that were accessed during the build

 If files accessed are in the obj tree, then a variable called DIRDEP

is updated. The DIRDEP variable contains a list of directories that

can be built *before* this directory. The directories are relative to

the top-level src directory

 Buildfile.dep is a file which is written out which contains the

DIRDEP variable

 A target in the “makefile infrastructure” called updatedirdep is then

called by jbuild, and another file called Buildfile.dirdep is written out

which has logic for determining what Buildfiles can be built before

the current Buildfile

19 Copyright © 2009 Juniper Networks, Inc. www.juniper.net

DIRECTORY DEPENDENCIES: 2-LEVEL SUB-MAKE
PROCESSES

 In our existing build system, we try to restrict the level of make

processes to 2

 The level 1 jbuild process reads in sys.mk and the default “makefile

infrastructure” . If a Buildfile.dirdep does not exist in the current

directory, a default one is created. The Buildfile.dirdep is then

read, which then possibly includes many other Buildfile.dirdep files

 The level 1 jbuild process gets a quick view of all the directory

dependencies

 At the end of the Buildfile.dirdep, “jbuild all” is invoked. This is the

second-level jbuild process, which actually does the build.

 Having more than two levels of sub-make processes can cause

race conditions under high levels of parallel builds

20 Copyright © 2009 Juniper Networks, Inc. www.juniper.net

DIRECTORY DEPENDENCIES: 2-LEVEL SUB-MAKE
PROCESSES

Level 1 jbuild process: reads Buildfile.dirdep files, then calls “jbuild all” for

for each Buildfile corresponding to a Buildfile.dirdep

Level 2 jbuild process: builds the all target. Does the actual building of the

target, and writing out of .meta files.

When level 2 process exits, the atexit() handler

parses the .meta files created, and does jdirdep

processing to update directory dependencies

21 Copyright © 2009 Juniper Networks, Inc. www.juniper.net

TESTING THAT A DIRECTORY BUILDS ON ALL
TARGETS

 cd src/lib/libfoo

jbuild –DALLMACHINES

 This is much faster than “make universe”, because we capture the

directory dependencies at a finer level.

22 Copyright © 2009 Juniper Networks, Inc. www.juniper.net

TRYING IT OUT

1) Check out jbuild project branch from FreeBSD svn:

svn co svn://svn.freebsd.org/base/projects/jbuild src

2) Build and load filemon.ko :

cd src/usr.bin/jbuild/filemon
make
kldload filemon.ko

3) Build jbuild and jdirdep:

cd src/usr.bin/jbuild ; make
cd src/usr.bin/jdirdep; make

4) Copy jbuild and jdirdep to somewhere in your path.

5) cd src/lib/liby
jbuild

23 Copyright © 2009 Juniper Networks, Inc. www.juniper.net

FUTURE DIRECTIONS

 filemon functionality (“meta-mode”) is being rolled into NetBSD’s

bmake by Simon Gerraty <sjg@juniper.net> who is the NetBSD

bmake maintainer.

 Functionality being rolled into NetBSD bmake is cleaner

implementation than what was done for jbuild, but principles are

the same.

 Being able to capture tracing information of actual files touched

during build is extremely useful for determining accurate

dependencies.

24 Copyright © 2009 Juniper Networks, Inc. www.juniper.net

CONCLUSIONS

 The FreeBSD build system is well established and extensible.

Many people make products derived from FreeBSD, and hook into

the existing build system.

 Some of the pain points in the build system can be alleviated by

incremental modifications to the make tool, and by writing new

“makefile infrastructure” to handle directory dependencies, and a 2-

level sub-make model.

25 Copyright © 2009 Juniper Networks, Inc. www.juniper.net

IN MEMORIAL

• John Birrell, Nov. 20, 2009

• jb@FreeBSD.org

jbirrell@juniper.net

http://lists.freebsd.org/pipermail/freebsd-announce/2009-November/001284.html

