
eXecute-In-Place (XIP) Support for NetBSD

Masao Uebayashi
Tombi Inc.

uebayasi@tombi.co.jp

April 5, 2010

Abstract

XIP is a technique to execute programs directly from NOR FlashROMs without user programs copied into RAM as
page cache. Its basic functionality is realized with small changes inNetBSDbecausepage cachemanagement is already
concentrated in single place calledUBC, where all file data access (read() / write(), and mmap()) go through. This paper
explains the design and implementation of the changes made to theNetBSDkernel to supportXIP.

1 Background

1.1 What isXIP?

In Unix-like systems, programs are usually stored in
filesystems mounted on block devices, most typically
hard disk drives. OS copies programs to execute, be-
cause executable region has to be memory mapped.XIP
is a technique to execute programs directly from NOR
FlashROMs without programs copied into RAM aspage
cache.

XIP is very commonly seen in embedded OSes (e.g.
RTOS), whose memory model is much simpler than Unix.
Unix system run-time image is made of kernel and user
spaces. Kernel is always resident in RAM during its ex-
ecution. Kernel XIP is easily achievable because it’s al-
ready almost XIP by nature; it has a single copy of image.
Kernel XIP is widely used in Linux to speed up boot time
by omitting initial copy of kernel image[3].

Userspace XIP is more difficult, because user program
execution is more complex activity built on top of a num-
ber of levels of abstraction to meet various requirments of
users and user programs (applications); various devices
and filesystems, dynamic execution

This paper explains only userspace XIP support.

1.2 Who needsXIP?

The purpose of XIP is all about reducing memory usage
in user program execution. We want to reduce memory
concumption mainly in two reasons:

• Internal simplicity

Dynamic memory allocation is a complex activity.
By executing user programs directly from ROM, the

system can omit loading a mapped file from backing
store devices. It also saves dynamic memory (page
cache) allocation.

• Power consumption

RAM consumes more power than ROM. Products
can run longer if you can execute programs running
directly on ROM. This matters for embedded pro-
ductions that are driven by batteries.

On the other hand, XIP comes with many restrictions
described later sections. It’s not an option to solve prob-
lems magically. It’s an option for developers who under-
stand its implications and limitations and best used only
when the product is carefully designed with other tech-
nologies like NAND FlashROMs as data storage.

1.3 Why XIP looks odd?

As already mentioned, programs are usually copied from
a backing store (a block device) to RAM. Why? CPU can
execute only instructions that are directly accessible from
CPU, which means, the device’s data is mapped in CPU’s
physical address space. The main memory (RAM) serves
that.

Traditionally Unix has had an assumption that user pro-
grams are placed in a filesystem, which in turn is placed
in a backing store (block device). Unix has ignored sit-
uations where programs are executed directly from such
devices, because it’s expected to break almost every as-
sumption made in VM and fintroduces lots of oddities.

In NetBSD, however, it has turned out to be not that
difficult to achieveXIP because most part of problems are
already solved byUBC[2]; it concentrates access (both

1



via mmap() and read()/write()) to pages in single place,
page cache. The details are explained later.

2 Goals

Simplicity

Both of the design and implementation have to be sim-
ple enough to be understood by all users and developers.
We don’t try to solve everything in one place; rather one
thing to solve in one place. Users who want our XIP to
solve a simple problem can easily solve it. Users who
face a complex problem (programs, data, hardware limi-
tations, many other requirements, ...) have to solve their
problem by combining multiple techniques, and design-
ing their products by themselves. We assume that users
are not stupid.

Correctness

NetBSDis known as its well thought design. The changes
made by XIP must be proved correct. Ideally all the
combinations of the possible operations are identified
and tested. In reality, it was quite difficult because the
UVM[1], especially the fault handler, was doing too many
things in scattered places. The code has to be clarified be-
fore the XIP changes are applied, to prove the correctness
of the relevant change in the code, instead of adding com-
plicate code fragments and claim that ”it just works”.

Code cleanliness

Changes made by this work to theNetBSDkernel touch
VM code, which is one of the most critical code path and
almost everything inNetBSDrelies on. The changes have
to be not only correct, but also harmless for non-XIP case
performance, and clearly separated from non-XIP code.

Changes made to supportXIP can’t be centralized in
one place but aare sprinkled in the source tree by nature.
Such a functionality is difficult to maintain if its overall
design is not clearly documented. Design documentation
is desirable.

Memory efficiency

Save as much memory as possible. We save not only ex-
tra copy of executable files to RAM, but also page state
object (struct vm page) which is usually allocated one
for each physical memory page. All thestruct vm page

objects occupy about 1.8% memory of the size of the real
physical memory pages on NetBSD/sgimips 5.0.1

1On NetBSD5.0 sgimips, the size ofstruct vm page is 72. Given
that page size is 4K, (1 * 1024 * 1024) / (4 * 1024) = 256struct
vm page objects are allocated for 1MB ROM and total size is 72 * 256

Compatibility

While XIP is used in somewhat limited contexts, we don’t
want to require any unnecessary tasks. Our implemen-
tation is independent of filesystem types. Userland pro-
grams don’t need any modification; both statically linked
and dynamically linked programs work as usual. Access
to file data within executable files is consistent. Although
dynamically linkd programs don’t really make sense, be-
cause they’re copied into RAM.

Our XIP implementation resulted in introducing a few
new concepts in theNetBSDkernel. We had to teach the
new knowledges to the VM. We tried best to avoid any
API backward-incompatible changes to any VM primi-
tives. We did some cleanups to some complex VM code
fragments (especially the fault handler) to isolate condi-
tions and clarify responsibilities, but still, no backward
compatible changes are made.

Performance

Read performance of ROM devices depends on device’s
access speed, which is usually very slow compared to
RAM. CPU’s cache (both for instruction and data) is
mandatory to makeXIP usable in practice. Although it
might be possible to invent some page cache mechanism
dedicated forXIP, we don’t consider this for simplicity in
this paper. It would be useful if filesystem is optimized
for XIP. At this point we use FFSv1 as a proof-of-concept
target. Filesystem optimization is discussed in later sec-
tions.

3 Use cases

3.1 Possible users ofXIP

XIP makes sense best where available RAM size is ex-
tremely limited. Most typical cases are embedded devices
like cellphones. Smaller RAM size gives us not only the
reduction of cost but also power consumption at run-time.
Advanced users who want to runNetBSDwith very low
power consumption, and who can customize userland are
all possible targets ofXIP.

3.2 Requirements

NOR FlashROM

This is the most important, but the only hardware require-
ment. XIP doesn’t make sense at all without this. Once
you have write a filesystem image into a ROM, you don’t
need write operation at run-time.

= 18.4KB.

2



Kernel customization

While NetBSDis moving toward modular and binary dis-
tribution,XIP is not provided as a part of binary distribu-
tion. It’s is also very unlikely thatXIP support is enabled
in the official binary images, becauseXIP is used only
in certain contexts. It adds extra code, though it’s very
small, in some very critical code paths like fault handler.
EnablingXIP is not a good option for the single official
binary release.

Userland customization

Although our XIP implementation can execute any user-
land programs, users are recommended to customize and
build their own userland.

When a write occurs into XIP’ed process address space,
the VM handles it as copy-on-write; allocate a page on
memory and copy the original data (on NOR FlashROM)
to a RAM page. This means that users have to carefully
avoid copy, otherwise everything is copied into RAM, and
XIP doesn’t make sense at all. Typically users are rec-
ommended to build a single statically linked program in
userland. Such a program has to be configured and built
by themselves.

3.3 Restrictions

Can’t run from NAND FlashROMs

NAND FlashROM is getting cheaper and more widely
used. Unfortunately NAND FlashROM can’t be used
for XIP because its block (data) is not directly memory-
mappable; its data are accessed by exchanging a sequence
of commands and a buffer. As a result, NAND FlashROM
is used in a very different way from NOR FlashROM;
NOR is for mainly executables like bootloaders orXIP-
ready programs (either kernel or userland) and data files.
Other data, imagine MP3 files in mobile audio players,
would fit in NAND FlashROM. It’s very common for em-
bedded systems to implement both of NOR and NAND
FlashROMs.

Can’t compress filesystem images

It’s been a common technique to compress the system’s
image to reduce the size of the image stored in the ROM.
Typically such a compressed image is loaded and inflated
from ROM to RAM by the bootloader. Obviously such a
compressed ROM image can’t be executed directly. Im-
age compression is a very opposite approach ofXIP where
the size of RAM is considered more important than ROM.
Users decide which

3.4 Development

Basically ourXIP implementation will become part of the
standard NetBSD source distribution. NetBSD’s develop-
ment environment is very consistent and self-contained;
users can build NetBSD image (compiler, kernel, user-
land, filesystem image) on almost every POSIX-like op-
erationg systems.

Our XIP implementation needs no special change ex-
cept users have to build their own userland programs as
a crunched binary, whose build procedure is a little spe-
cial and different than the standard build procedure pro-
vided by NetBSD, build.sh.XIPmakes sense for statically
linked programs, which don’t need to rewrite

3.5 Deployment

The current implementation doesn’t support write. Users
have to unmount the XIP’ed filesystem to update the
filesystem image. Update could be done via write(2)
to the flash(4) block device driver in NetBSD, or using
firmware. Users have to carefully design the system and
its deployment plan.

3.6 Operation

All users have to do is to mount the filesystem as read-
only and xip options explicitly specified. Root partition
(/) can be mounted as XIP too.

4 Overview

To realizeXIP the following parts inNetBSDare involved:

4.1 Host (development environment)

As already explained, XIP will become part of the stan-
dard NetBSD source distribution. NetBSD distribution
is truely self-contained; it contains compilers to build
NetBSD, and both userland and kernel source. The whole
NetBSD image can be built on most POSIX like operating
systems like Linux and Mac OS X.

The current XIP implementation is transparent to
filesystems, which means, users can use any filesystem for
XIP image in theory. But in practice, NetBSD”s filesys-
tem image creation command (makefs(8)) only supports
ffs(4) and cd9660(4). Users are strongly recommended to
use ffs(4) for XIP.

To avoid unnecessary copy from ROM to RAM, ex-
ecutables in XIP’ed filesystem image should have read-
only text segment, most typically statically linked exe-
cutables. In highly customized environments, NetBSD
offers crunchgen(8) to build a bundled static binary as

3



Linux’s well-known BusyBox does. The development in-
terface of crunchgen(8) is a little inconvenient; developers
have to get used to it.

Altenative to statically linked or crunched binaries is
position independent, dynamically linked executable with
read-only text segments. Unfortunately these formats are
not common in NetBSD yet. When these will become
available, these should be just part of NetBSD’s toolchain,
and users just have to build their binary with enabling
some configuration option.

In summary, while NetBSD lacks many features now,
the development environment is self-contained, and will
be so even after new features are added.

4.2 Hardware

Basically the only hardware requirement to function XIP
is memory-mappable ROM, that is NOR FlashROM. In
reality, you should carefully design your product consid-
ering XIP’s characteristics and your use cases. First of
all, XIP’s performance heavily relies on the read access
speed of NOR FlashROM. Secondly, CPU’s cache (both
instruction and data) matters. Ideally user programs’ text
segments are fully resident in instruction cache. Actual
cache and memory behavior depends on user programs’
behaviors.

In extreme situations, you want to save active PTE used
in MMU for text segment. Mapping long, read-only text
segment using super page is easy in theory. But unfortu-
nately NetBSD’s VM doesn’t support super pages yet.

4.3 Target (userland)

Our XIP needs help of userland programs in that they have
to be built in an XIP-friendly form. That is, unnecessary
write to text and data segments are best avoided, otherwise
those pages are copied into RAM as copy-on-write.

Users are encouraged to use “crunched binary”.
Crunched binary is a statically linked executable file with
bundled library functions. Usually statically linked exe-
cutable files have copies of library functions. By crunch-
ing those statically linked executable files into a single
file, those duplicate library functions are shared.

While our XIP implementation is transparent to user-
land executables, users have to understand the internal be-
havior to benefit from XIP, otherwise pages are implicitly
copied into RAM and just keep running normally without
any error.

Text segment is modified at run-time mainly for two
cases; code relocation and debugging. Code relocation
occurs in dynamically linked libraries whose actual ad-
dresses are determined at run-time. The dynamic (run-
time) linker collects necessary dynamic libraries, maps

them into the process’s address space, and fixes the ad-
dresses embedded in the text segment of the main program
and libraries. The actually modified code and data depend
on the format of executable files. Some architectures may
support read-only text relocation, where code is carefully
generated to be position-independent and addresses are
resoved by referring to the intermediate relocation table
in .data section. Thus text segment is not modified at run-
time. This topic is beyond this paper’s scope. Those who
want to build a complicate set of userland programs may
consider this approach.

Text segment may be modified for debugging purposes.
Internally this is seen to VM as a write operation to a pri-
vate map. This just works in XIP environment.

The organization of user programs should be carefully
designed, especially placement of data. The basic rule
is to concentrate read-only data and don’t modify them.
UVM doesn’t allocate memory for .data and .bss sections
until pages are really modified and write access is trapped
by protection fault. Read-only data marked as “const” in
C code result in read-only segment (“.rodata” in NetBSD)
in the executable file. Other data will be modified at run-
time sooner or later. There is no point to record these data
as is in NOR FlashROM, because those data are destined
to be copied to RAM. Users may consider to compress
these data in filesystem and read them via I/O. Some ad-
vanced filesystems like AXFS[3] automatically compress
data segments and store them transparently. Even with
such an assist from filesystems and other infrastructures,
users have to carefully design their programs.

4.4 Target (kernel)

Block device drivers

XIP-capable ROM devices behave in two ways. Firstly
it’s a block device to provide usual block I/O interface
for kernel to access filesystem metadata. Secondly it’s
directly mapped to user process spaces.

Usually such a memory mapping operation is done via
character device’smmap() interface. InXIP, the device
only has to pass the physical address to filesystem sub-
system at mount time.mmap() is called by kernel’s exec
handler, and resolved in the succeeding fault handler.

Filesystem

XIP makes sense only for directly memory mappable
ROM devices. These will be recognized as a block device,
written a filesystem image, and mounted onto a mount
point.

This means that the capability ofXIP is known at mount
time. If anXIP capable block device is mounted, kernel
marks the mount point asXIP-capable. If a vnode is cre-

4



ated on that mount point, kernel marks the vnode asXIP-
capable. This reduces run-time checks.

Except these condition checks, filesystem is indepen-
dent of XIP in the current implementation. When VM
handles a fault to map a device page, VM asks filesystem
the address of a given page-sized segment of a file. It’s
specific to filesystems, but nothing special is needed for
XIP, because metadata is accessed via block device inter-
face, which is provided by allXIP capable block device
drivers.

NetBSD has two interfaces to access filesystems; buffer
cache and page cache. The former is used mainly for
metadata (file attribute) and raw data retrieval without
opening a file via the standard file I/O interface for users.
Buffer cache relies on the block I/O interface. This means
that XIP capable NOR FlashROM drivers have to provide
not only mmap() but also the block I/O interface so that
its data can be accessed as a filesystem metadata by the
kernel.

Kernel execution handler

Userland program execution is a special kind of memory
mapped file access tightly coupled with execution con-
text (process). Like usual file mmap(), program execution
is done in two stages, preparation (mapping) and actual
access resolution (fault handling) as explained in the fol-
lowing sections. When a process requests the kernel to
execute a program, the kernel looks up the given path, lo-
cates the file, and read its program header metadata. In
NetBSD, this part of access is done via buffer cache in-
terface. Next kernel prepares a process context including
per-process address space data structures. The kernel asks
VM to map the needed program sections into the created
address space following the read program header metadta.

Userland program’s address space entries are always
associated with vnodes; after the executed process’s ad-
dress space is created, the content of the executed file is
accessed via VM’s vnode interface (vnode pager). Once
program execution is bootstrapped with help from the
kernel, and its execution is started, remaining behavior
is transparent to the kernel and VM. Userland programs
may map a new executable code to extend itself (dynamic
link).

When the mapped address space is executed in
userspace, the machine’sMMU causes a memory access
fault. VM is responsible to load the actual page and reg-
ister the H/W mapping information so that the faulting
process will see the data when it’s resumed its execution.

VM

VM plays a major role in the XIP functionality. Espe-
cially XIP is about device pages (like NOR FlashROM).
The author had to teach a new knowledge of device pages

to the NetBSD’s VM subsystem called UVM. It was a
fundamental design change (despite the small amount of
diff) made against one of the most complex subsystems in
NetBSD. The detail of UVM is described below.

5 The UVM

5.1 History

UVM[1] was developed by Charles D. Cranor and Gu-
rudatta M. Parulkar. It was merged into NetBSD 1.4 in
1999. The initial motivations why it was developed to re-
place BSD VM were the following four reasons:

• complex data structures

• poor performance

• no virtual memory based data movement mecha-
nisms

• poor documentation

Later another big change called UBC[2] was added into
NetBSD 1.6 in 2002. UBC unified buffer cache and page
cache so that it could provide a unified access to page
caches both for I/O methods (read() / write()) and memory
mapped file (mmap()).

UVM and UBC are often told together as one of the
beggest and greatest features of NetBSD, and have proved
its usefullness. Unfortunately, these are actually very
complex systems, and understood only be a limited num-
ber of people even in NetBSD developer’s community.
Such a situation has promoted the illusion of the greatness
of UVM and UBC unnecessarily.2

5.2 Key features

One of the most complex data structures seen in BSD
VM was object chains. BSD VM tracked copy-on-write
data by creating a new overwriting object and linking it
to the lower overwritten object. Thus if an object repeats
copy and overwrite, the chain extends. Managing such
a chain is a very complex operation. UVM addressed
this by introducing overlay layer (amap) and flattening
the chain; copy the overlay layer data rather than chain
it, while managing those objects cleanly and avoid unnec-
essary copies. This also improved performance for copy-
on-write operations.

Another big change introduced by UVM was virtual
memory based data movement (zero-copy), which is con-
sidered to be faster for transferring large chunks of data

2The author believes that great codes that are not understood are not
so great.

5



than copying them. According to the paper, UVM intro-
duced three mechanisms to achieve zero-copy; page loan-
ing, page passing, and map entry passing. Unfortunately,
it seems that there is only one feature, page loaning, that
is implemented and working. Its behavior is difficult to
understand. It’s known that page loaning are not good for
multi-processing environments.

UBC totally changed the file I/O and page cache be-
havior. While the core UVM interface was not affected
very much, the dirty work to manage page cache con-
sistency is now responsible to pagers. Especially vnode
pager’s page cache management code (genfs) is known as
one of the most complicate codes in NetBSD. XIP ben-
efits UBC’s work of unified page cache; the substantial
change needed for XIP is only to represent device pages
as page caches. In that regard XIP is considered to be an
extention of UBC.

5.3 Virtual address space map (struct
vm map) manager

UVM keeps virtual address space information asstruct

vm map, which represents a single contiguous virtual ad-
dress space. This doesn’t mean all the address space it
has are really used.struct vm map is responsible to all
the operations associated with the virtual address space.
Note that address space and actual memory on RAM are
distinguished concepts.struct vm map is only about the
former.

Actual space allocated in a givenstruct vm map has a
set ofstruct vm map entry, which represents a single
contiguous virtual address space with a coherent attribute
(protection, etc.). A variety of operations are made against
these data structures, like allocation, deletion, copy, share,
changing attributes, etc. The map manager concentrates
on the efficiency and correctness about given constraints.
UVM has to keep information as simple as possible even
after time goes.

It doesn’t, however, really need to focus on perfor-
mance; history has shown that map entry management is
so complex that enhancing it causes additional complex-
ity. Especially kernel has a single address space and reuse
its memory heavily. NetBSD is moving toward imple-
menting another layer (called kmem(9)) of space manage-
ment in between kernel memory allocator API and UVM
map manager. kmem(9) caches address spaces and mem-
ories given by UVM map manager. It utilzes given re-
sources as far as possible, and ask more resource only
when it’s really needed. kmem(9) is modeled after So-
laris.

XIP has nothing to do with this layer, because map
manager interacts actual pages only via the pager inter-
face. XIP’ed pages are transparent to the pager interface.

5.4 UVM Object and pager

UVM’s basic functionality is to help access to a variety
of things laid in various devices, using page-sized mem-
ory chanks as a cache. UVM provides an uniform method
to access those devices. UVM represents these as an ob-
ject; a set of methods and data (backing store devices and
caches) with linear address. This is called UVM object
(struct uvm object). Such an object-oriented abstrac-
tion is known as a well-established methodology to design
a complicate system like VMs. UVM’s core part doesn’t
need to know what kind of backing store a given UVM
object belongs to, and can focus on provided page cache.

The method part to manage consistency between page
cache and backing store is called pager. Pager is respon-
sible to manage its linear address, where page caches
are usually mapped. In the UBC’s world, all access to
UVM object is via as memory mapped; even file I/O ac-
cess is converted to memory mapped access by remapping
user’s I/O buffer onto kernel address space temporarily.
Thus pager is always entered from fault handler caused
by memory access fault.

There are a few “special” pagers; UBC pager, device
pager, and Xen’s priviledge page pager. These have a spe-
cial fault handler so that it can override the default han-
dler’s responsibility. UVM objects of these pagers don’t
have actual page caches. XIP’s behavior can be seen sim-
ilar to device pager, because XIP also deals with device’s
pages. Unfortunately the current device pager can’t han-
dle copy-on-write or other features to execute programs.

As already explained, pagers are basically entered only
from the fault handler. The basic pager operations are “get
pages” and “put pages”. When fault handler wants to get
a page cache in a given UVM object, it asks the object’s
pager to “get” the page. The pager looks up a page cache
already loaded in memory. If it doesn’t exist, the pager
executes I/O operations to retrieve the relevant data from
backing store.

Vnode pager is responsible to manage vnodes (files).
Vnode management is a super complex task because
filesystem is complex. Filesystem provides a standard set
of operations to manage data stored in storage devices.
UBC vnode pager maps page size granularity page caches
and blocks in filesystems. This mapping is one of the rea-
sons of the complexity. The another reason is that vnode
behaves asynchronously for performance reasons.

Write operation (“put pages”) collects pages to be writ-
ten back to backing store. Vnode pager has to carefully
manage pages. Pages may be memory mapped to user’s
address space. Pages may be shared among multiple ad-
dress spaces too. Clean pages should not be written back.

6



5.5 Overlay (AMAP) manager

The overlay manager in UVM is composed of two
main data structures; amap (struct vm amap) and anon
(struct vm anon). amap is a mapping with a linear ad-
dress like UVM object. amap is allocated for each address
space to keep track of overwritten part. amap has slots to
store its own privately modified pages. These private over-
written pages are anons. anons fill amap’s slots. These are
special forms to avoid object chain for privately modified,
copy-on-write data. They’re shared and reference counted
where possible.

anon has no actual backing store, because it’s content
is private; the modified data is visible only to the exist-
ing process. anon may be swapped out instead, when
available memory is getting smaller. Swap is optionally
configured by user to temporarily put these “anonymous”
memories in running system.

5.6 Physical page and segment manage-
ment

The primitive data structure to represent freely available
“physical” memory page isstruct vm page. When a
kernel boots, its image is copied by boot loader into the
main RAM. Kernel calculates available memories as seg-
ments asking firmware or lookup hardware configuration.
After kernel allocates some persistent data structures (like
page tables), it re-calculates available memories. Af-
ter things are bootstrapped, kernel registers register those
freely available memory pages as segments to the VM.

VM allocates VM pages for each freely available mem-
ory pages. VM page is a metadata of freely memory page.
It keeps state of the associated page-sized memory. VM
page has mainly two distinct states; paging and H/W map-
ping. Paging is activity to read or write backing store data
from / to the memory page. These pages are called page
cache. VM keeps such a state in VM page because I/O is
considerably slow operation compared to memory opera-
tions.

H/W mapping state information is about consistency of
memory page and relevant CPU cache. When a memory
page is mapped with CPU cache disabled, VM doesn’t
need to keep track of the memory page, because non-
cached access is volatile, stateless. Cache means a copy
of data put in the original location. It’s often software’s
responsibility to “manage” these copies and consistency.
This is also important where a single page is mapped in
multiple address spaces too. UVM and its ancenstors have
used the structure calledstruct vm page md to store
“machine-dependent” part of VM page. Since H/W map-
ping is done in machine-dependent code called pmap (ex-
plained later), we can assume H/W mapping related state
is kept instruct vm page md for now.

Figure 1: UBC and page cache

UVM records a contiguous physical RAM segment as
VM segment,struct vm physseg. VM segment has an
array of pointers to its VM pages. VM segment’s role
has been limited, because most information of memory
pages are in VM page. VM segment, however, will be
more important because it’s the best data structure to store
physical segments of device pages.

The author has extended the use of VM segment to store
device pages too with newly added members meant for
managed device pages. Note that we don’t allocate VM
pages for managed device pages, because we don’t need
most part of VM page which stores paging activity state.
Instead we decided to allocate only H/W mapping related
information. The detail will be explained in later sections.

5.7 pmap

pmapis the abstraction layer of hardware’s physical mem-
ory management unit (MMU) handling.pmapdata struc-
tures are devided into two parts; per-address-space struc-
tures (struct pmap), and per-page structures (struct

vm page md).
Per-address-space data is mainly about page tables and

page table entries. pmap stores all address spaces’ H/W
mapping data in main RAM so that it can lookup the rele-
vant page table entry and reload it into MMU, when MMU
has lost the page table entry. Kernel mappings that are not
never paged out (“wired”) are called unmanaged pages.

7



Page fault for unmanaged pages never enters UVM’s fault
handler, because unmanaged pages are wired, and don’t
have any backing store.

Per-page data structure is used to keep track of
physical-to-virtual mapping (PV map for short) entries for
managed pages. This is because a) we want to lookup
H/W mapping state using virtual address as a key, and b)
pmap has to notify H/W mappings sharing a single page.
There are many cases where a page is shared (commonly
mapped) among multiple virtual addresses. If a shared
page is changed somehow, pmap has to invalidate all the
H/W mappings referring to the changed page, otherwise
those virtual addresses will see the stale cache data.

5.8 Fault handler

Kernel and processes running in Unix and other modern
operating systems have virtual address space. Its behavior
can be roughly described in two stages; preparation and
resolution. Virtual address space users prepare a “map”
by associating their address space to a memory or some
object that can be abstracted by a linear address like de-
vices. Next, VM resolves actual accesses to memory or
devices by catching MMU’s page access fault. The latter
is called page fault handling. The code doing paging fault
handling is called fault handler.

Unmanaged page is easy to handle; what needs to be
done is only about filling MMU’s H/W mapping entries.
OS doesn’t need to take anything into account other than
H/W mapping entries, because unmanaged pages have no
cache, no backing store, no duplication of data, and no
inconsistency.

Managed page’s fault handling needs more work; VM
is responsible to prepare the faulting page as a page cache
before returning back to the original execution context
which is accessing the virtual address space. If the page
cache is found in memory, VM just re-enters the H/W
mapping entry to MMU. If the page cache is not in mem-
ory, VM invokes the pager to retrieve the relevant data
from the backing store using I/O subsystem. This means
that fault handling is potentially a very slow operation. A
variety of techniques are introduced to reduce the chance
to cause I/O, which makes the fault handling code more
complicate.

UVM’s fault handler is in a little odd shape because the
existence of special handlers where pages are not usual
page cache of backing store objects. Other than those
special handlers, UVM’s fault handler is roughtly divided
into two parts, lower (UVM object) and upper (overlay).
At the entry the fault handler checks if the faulting address
is covered by the overlay (amap). If yes, the handling is
passed over to the upper handler. Otherwise the lower
handler.

Lower fault handler is responsible to retrieve the fault-

ing page cahe from the backing store using I/O. Organiza-
tion of page caches and backing store is specific to UVM
object (pager) types. Vnode pager maps UVM object’s
linear address to actual block address of storage devices
by querying filesystem’s code (VOP BMAP()). Another
UVM object pager is “aobj”. aobj uses swap as its back-
ing store. This means that its contents’ lifetime is only
during the system’s uptime. aobj is useful for kernel data
structures that can grow, but doesn’t need to be always
resident in memory.

When the faulting address is overlaid the upper handler
resolves the fault. Overlay data structures are designed to
be shared among multiple address spaces (VM map en-
tries) so that UVM doesn’t need to manage page chains
for privately modified data. UVM copies a privately mod-
ified page on-demand. This is possible because MMU
can catch protection fault; VM registers writeable pages
as read-only H/W mappings so that write access to those
pages cause write protection faults. The fault handler
knows the original protection (writeable) and the faulting
(access) protection. The fault handler belatedly copies the
faulting page into a new page, updates the H/W mapping
to point to the new physical page address, then back to the
trapped context.

The on-demand page copy to the overlay is called “pro-
motion”. Promotion can happen both from the lower
UVM object layer and the upper overlay layer. When a
promotion from the lower layer occurs, the fault handler
has to prepare two data structures, amap, and its slot, VM
anon.

6 Design

6.1 Device page handling in the fault han-
dler

The biggest question to realizeXIP in UVM is how to
represent those memory-mappable device addresses in the
fault handler.UVM has basically 2 special fault handling
cases (UBC, character device) and the generic handler.
Two possible approaches were considred. One is to teach
copy-on-write handling to the character device handler.
The other is to teach device pages to the generic handler.

After much consideration3, we decided to go to the lat-
ter, because copy-on-write handling implemented in the
generic handler is very complex. Reimplementing it in
the device handler is not good too in that code is dupli-
cated.

It turned out that teaching device pages to the generic
handler, along with vnode pager, was not that difficult.

3The author experienced tough time to made this decision (changed
directions LOTS of times), because it was early development stage, and
he didn’t understand the code very well.

8



Figure 2: Page fault handler

This was done by abstracting thestruct vm page * ob-
ject. struct vm page * object is a struct, whose ob-
ject is allocated at system boot time, one for each page
cache. It’s the metadata of page cache; most importantly
it keeps the state of the matching page cache’s paging
state. In fault handing’s context, the only relevant infor-
mation instruct vm page * is physical address of the
page cache.

6.2 Device page representation inUVM

To design the representation of device pages inUVM, we
identified the characteristic of device page and compared
it to page cache.

page cache device page
mapping physical memory physical device

paging yes no
attribute per-page homogeneous

metadata struct vm page struct vm physseg

Those are substantially different in that device page are
persistent (never involved in paging) and homogeneous.
Considering these, we concluded that device page doesn’t
needstruct vm page metadata like page cache. This
works because

• The fault handler allocates an array ofstruct
vm page * on the stack. It’s filled by the vnode

� �
/*

* encode a device’s physical address

* into struct vm_page *

*/

#define PHYS_TO_VM_PAGE_DEVICE() ...

/*

* decode a device’s physical address

* from struct vm_page *

*/

#define VM_PAGE_TO_PHYS() ...� �

Figure 3: Page cache vs. device page

pager, and later passed to pmap(9) to register H/W
mappings. That is, thestruct vm page * object is
almost opaque to the fault handler.

• The struct vm page * is dereferenced in only
limited number of places for related to paging activ-
ities and some exceptions like wired and/or loaning.

In the current implementation, thestruct vm page *

for device page is a pointer with a magic value is encoded.
This value is encoded by the vnode pager when the phys-
ical address of the page in the block device is known by
callingPHYS TO VM PAGE DEVICE().

9



� �
/* register device memory for general use */

bus_space_physseg_t

bus_space_physload(

bus_space_tag_t space,

bus_addr_t addr, bus_size_t size,

int prot, int flags);

void

bus_space_physunload(

bus_space_physseg_t seg);

/* register managed device pages */

bus_space_physseg_t

bus_space_physload_device(

bus_space_tag_t space,

bus_addr_t addr, bus_size_t size,

int prot, int flags);

void

bus_space_physunload_device(

bus_space_physseg_t seg);� �
6.3 Device physical segment

Managed device page

Before device pages are introduced, UVM and PMAP had
no knowledge about mmap’ed character devices. UVM
only managed physical segments of the system’s mem-
ory (RAM). When PMAP is given a physical address to
map, it looks up the managed physical memory segments.
If the physical address is included one of those segments,
PMAP considers the physical address as ”managed”. Oth-
erwise, PMAP assumes the address as ”unmanaged” and
maps it as uncacheable page. This is not acceptable be-
havior for XIP for performance. XIP pages should be
cacheable like other executables, or performance would
be miserable.

To address this, UVM should provide information for
PMAP to judge a given physical page is managed or not.
We added physical address segment data for those device
pages too. Now when PMAP is given a

Device physical segment registration

Device drivers have to register their memory-mappable re-
gion to the VM, so that VM recognizes such a region and
manages it. We’ll introduce new functions as part of de-
vice drivers API.

bus space physload() and
bus space physload device() register a spec-
ified device space as part of VM aware man-
aged space. bus space physload() is for man-
aged device spaces used as page cache, and

bus space physload device() is for managed
device spaces used as device page.

Copy-on-write

UVM is so smart that it delays to allocate data segment’s
page cache when it’s firstly written. This means that the
device page mapped into a process seeing its data segment
is replaced with a writable page cache (anona), while the
virtual address stays the same address. With cache en-
abled, UVM is responsible to make the process see the
newly replaced data, by invalidating the cache content as-
sosiated for the mapped virtual address and page.

This is usually done in PMAP layer for the faulting
process whose address is being updated. The problem
is when the upper layer to which a page is promoted is
shared among other processes. UVM has to tell PMAP
layer that the physical page replacement affects other pro-
cesses too. In order for PMAP to invalidate other pro-
cesses’ cache, PMAP layer has to track what process’s
address is mapped to what physical address. This is called
as PV mapping.

Each PMAP implementation is responsible to PV man-
agement. In reality, those implementations are classified
into two categories:

• Have a global hash (x86).

• Associate those PV entries to the relevantstruct

vm page objects (arm, mips).

The former type works as is because it doesn’t make
any difference about added PV entries. The latter needs
remedy because we don’t allocatestruct vm page ob-
jects for device pages. Here we have two choices:

• Give up shared amap.

• Maintain PV entries for device pages separately.

Giving up shared amap means that we have to copy
amap everytime a process is forked. This overhead could
be considerably big in usual Unix use-cases where pro-
cesses are very often forked. It’s also possible that some
user want to run a highly simplified userland, where only a
few processes run and they don’t fork and copying amap
for every process is expected to have little impact about
memory usage.

To maintain PV entries for device pages, we need some
additional code and data in UVM. We implemented a very
simple, global hash lookup table. If PMAP is given a
physical address, and it’s known to belong to a device
page, PMAP looks up the physical address in the hash
and finds the PV entry header, walks the list and finds the
matching PV entry.

The decision to make this simple was made because
such a operation is considered a rare operation. When an

10



� �
struct vm_page *pg;

...

+ if (!uvm_pageisdevice_p(pg)) {

pg->flags &= ~PG_BUSY;

+ }

...� �
XIP program is exec’ed, its sections are mmap’ed. When
a page in the data section is first written, the access is
trapped by the MMU and then the fault handler allocates
a page cache, copies the data, replaces, and promotes it.
Once a page is promoted to anon, it’s dealt with as a page
cache, and no more XIP specific handling needs to be
taken account into.

The another point is that device pages that are supposed
to be promoted are all in data sections. Those pages are
very likely to be placed continuously in the filesystem im-
age. Small hash size should not be problematic.

7 Implementation

7.1 Physical Page and Segment Manager

The first thing is to define device page. We took an
approach which affects the least impact to the existing
code, while achieving the goal to makestruct vm page

* opaque. The new definition ofstruct vm page * is
that:

• struct vm page * points to either page cache or
device page.

• Which typestruct vm page * points to is queried
by a new function,uvm pageisdevice p().

• struct vm page * can be dereferenced only if it’s
page cache.

Thus we can leave almost all the code as is. Code paths
that have to deal with device page are very limited; mainly
the fault handler, and some pager codes. Most changes,
whose details are explained in the following sections, are
to skip page cache handling if a given page is device page.
Typical code fragment looks like:

7.2 Fault Handler

The fault handler’s responsibility with respect to device
page is almost transparent; it traps a page fault, looks up
the faulting page’s metadata, asks a pager to load the page,
then enter a H/W mapping. However, the fault handler has
become very complex to support UVM’s enhancements.

� �
uvm_fault() {

check_and_prepare();

if (upper) {

handle_upper();

} else {

handle_lower();

}

}

handle_lower() {

if (need_io)

do_io();

if (need_promote)

do_promote();

enter_hw_mapping();

}� �
The heart of this paticular task is to realize the responsibil-
ity of the fault handler, identify the relevant code, judge if
it’s related to device page, then insert conditions in places.

Basic code flow of the UVM fault handler looks like
XXX. Device page is handled in lower fault code, be-
cause it belongs to vnode, which is one class of an object
pager. The changes made in the lower fault code path are
to skip either page cache specific behavior, or some spe-
cial features like page wiring and page loaning. We gave
up wiring and loaning support because they rely on the
metadata (struct vm page *) to keep the those special
states.

7.3 Vnode Pager

In XIP, a device page in an executable file are mapped in
a file, which is represented as an object with a range. If
a user accesses the file, either mmap or read/write, a page
fault is triggered, and the fault handler traps it. Next the
vnode pager is asked by the fault handler to do two things
in order:

• If a set of pages is resident, return status

• If a set of pages is not resident, address the file blocks
matching the requested pages, do I/O, then return sta-
tus

It’s obvious that this scheme is to manage the complex-
ity of filesystems where:

• Files are put in a backing store. To read / write a
file from / to there is very expensive task and slow.
Which leads to introducing page cache. While page
cache improves performance, it also brings more
complexity.

11



• Mapping of files are complex, because filesystems
manage directories, long names, etc.

However, careful investigation revealed that we can ef-
fectively omit most of these difficulties for XIP’ed device
files, by using a dedicated vnode pager for XIP. Its behav-
ior looks like this:

• Map the requested region into page addresses, then
return them

Pretty much simple, because device pages always exist
where CPU can map and address. No paging and I/O are
involved. This is enough for XIP whose filesystem is read-
only.

Note, however, how page addresses and file blocks are
used. In the usual vnode pager, those mapping is used to
I/O; pager queries to a filesystem the actual block address
of a given page cache. In VM, a file is represented as a
linear object. In filesystems, the real blocks of the file are
likely to be scattered in the backing store.

For XIP, such page/block mapping are used to map
as a H/W mapping. Which means that the XIP vnode
pager has to pass these addresses back to the fault han-
dler, which in turn passes the addresses to PMAP, which
handles the actual H/W mapping operation. And the only
available way for the XIP vnode pager to return a set of
addresses is to encode the address into the argument array
of struct vm page *.

Another thing to consider here is handling of unallo-
cated blocks. For the usual vnode case, the given pages
are zero-filled. For XIP, it’s pointless to allocate zero’ed
pages for each unallocated blocks because of memory
consumption. We made these blocks to be redirected to
a single dedicated zero’ed page. All unallocated blocks
in all processes are mapped to this page. The XIP vnode
pager encodes the physical address of this zero’ed page in
the array as well as other blocks.

7.4 Kernel memory manager

As explained just above, we need a dedicated single
zero’ed page. We allocate a page from pool’s backend al-
locator (”pool page”). Pool page is good in that it returns
a page-sized, wired memory, and on platforms with direct
mapping, it’s used (no KVA waste). Such a dedicated,
zero’ed page may be useful in other parts (like /dev/zero
driver). We plan to merge these in the future.

7.5 Pmap

It was considred to give PMAP a hint that a given physi-
cal address is device page. We didn’t do this, because we
didn’t want to revise PMAP API only for XIP. We instead

decided to impose PMAPs that support XIP to learn a lit-
tle knowledge about device page. The needed changes to
handle device pages are simple; only a few conditionals
and look ups.

Another change here is PV maintainance. To support
UVM’s delayed overlay copy feature, we have to track
PVs for all device pages that can be promoted (data seg-
ment). PV management is implementation dependent.
Some has a global hash, others usestruct vm page. For
the latter case, we have to maintain PVs of device pages
somewhere. We chose to implement a generic global de-
vice page PV manager using a very simple hash code.

8 Other changes

8.1 Filesystem

Our XIP implementation is independent of filesystem
types. However, due to the design of NetBSD filesys-
tem, we have to change filesystem mount code path so
that XIP is enabled when mounted block device is ca-
pable of XIP, and XIP mount option is specified. When
filesystem mount code is passed XIP option, it queries the
block device’s physical address. If the block device sup-
ports XIP, it returns the base physical address back to the
mount code, and it’s recorded in per-mount data structure.

8.2 Block Devices

We developed a simple NOR FlashROM driver, because
NetBSD has never had any MI flash driver. This is a block
device which supports the usual strategy interface. This is
needed because NetBSD accesses file’s metadata via the
buffer cache interface, which is different than page cache
which is integrated with VM.

XIP capable block devices have to provide the physi-
cal address of the device. This is queried and told to the
filesystem mount layer when the block device is mounted.
This is only a cache; to avoid the physical address each
time when device pages are handled in the vnode pager.

9 Measurement

(Apologies.)

10 Consideration

10.1 Memory consumption

(To be done.)

12



10.2 Other implementations

(To be done.)

11 Issues

11.1 Fault handler

We did a major clean-up of the UVM fault handler before
applying the XIP change, because it had a very long, com-
plex function,uvm fault()4, which had too many things
to consider. We had to prove the changes made for XIP
don’t affect other parts badly, and also are placed in the
right place. So we decided to split the big function into
smaller pieces, where context is narrower and responsi-
bility is clearer. After the clean-up, the XIP changes look
reasonable; they’re only about skipping paging handling,
and ignoring some special cases like loaning or wiring.
Even after the clean-up, the fault handler is still complex
and needs more improvements as follows:

Special fault handlers

As explained previously, UVM has 4 fault handlers: the
generic handler, and 3 special handlers (UBC handler,
character device handler, and Xen’s priviledge fault han-
dler). Those special handlers are responsible to do every-
thing which is done in the generic handler. The problem is
that the responsibility is ambiguous. There are many code
fragments duplicate among these handlers. We should es-
tablish a well-defined responsibility of the fault handler,
and the code performing it should be concentrated in a
single place.

Super pages

Now UVM assumes that all pages are of the same size
(PAGE SIZE). Most processors support multiple page
sizes to reduce the amount of H/W mappings, and the fre-
quency of page fault. InXIP, user program’s text seg-
ment is truely read-only, thus suitable to be mapped by
large pages. Large pages are useful for other memory-
mappable devices like framebuffers, whose attribute is ho-
mogeneous.

The author plans to change the fault handler to deal
with not only struct vm page * but also struct

vm physseg *; meaning that managed page belongs to
either page cache (the former) or device page. Device
page fault actually needs “offset” too. When a fault is trig-
gered against the middle of a device page, device pager
returns the faulting device page as a segment (struct

vm physseg *) and its offset back to the fault handler,

4Actually uvm fault() is an alias macro of
uvm fault internal() which has the real code.

which in turn passes the pair to pmap. Device pages are
don’t involve paging activity, of course.

Supporting super pages for device pages is not difficult.
Things become a little more complex when large pages
are used for page cache. You have to maintain freelists of
multiple sizes, split and/or merge pages, and teach all ker-
nel subsystems that assume the size of page is fixed. This
will result in involving huge amount of changes. Support-
ing large pages only for device pages would be a good
step to start with for the moment.

11.2 Reliability and predictability

Related to the previous topicss, one of the biggest prob-
lems of UVM is lack of resource management. UVM
checks resource limits at higher level like when mmap()
is called. However, after it once allows usrs to their re-
souces, UVM doesn’t check resouces available for the
system to function. Most typically example is that UVM
always register H/W mapping entries for neighbor fault
without caring the available resouce at the moment. Note
that H/W mapping entry registration potentially allocates
memory to keep on-memory copy of the mapping infor-
mation. The resulting system’s behavior has less reliable
and predictability, which is a critical problem for serious
embedded systems.

11.3 Loaning

UVM has a kind of zero-copy send, called loaning. When
user’s data is copied to kernel, kernel subsystem checks
the size. If the size is big enough to compensate the cost of
preparing zero-copy rather than copying the buffer (which
needs no preparation). InUVM, the buffer is remapped
into kernel’s address space, then the real pages are marked
as read-only, then they’re passed to kernel. The user is not
allowed to have to wait for the I/O to be done. If the user
mistakenly writes while the I/O is on-going,UVM catches
a fault to resolve the situation; allocate a new page, copy
the data, then install the newly allocated page to the user’s
address space. Note that the user has a newly allocated
page than the original one which was loaned to the kernel.

In the XIP context, loaning of device pages could
be possible in that device pages are never paged out.
The problem is that the loaning implementation inUVM
needs the page metadata (struct vm page *) to track
the loaning count (because one page can be loaned multi-
ple times). To address this problem, the loaning code has
to revised to not use thestruct vm page * object. That
should makes sense considering that loaning is not a per-
sistent state; its lifetime is limited to the activation of I/O.
Loaning is also a rare operation; only big data pages are
loaned.

13



11.4 Wiring

NetBSDwires (pin-down) pages in some unclear situa-
tions. Those uses should be investigated one day, but un-
fortunately left in a pretty bad shape now. Wiring has
two meanings inUVM. One is to prevent a page cache
to paged out (pin-down). This is a straight-forward idea
considering the cost of doing I/O to retrieve a page from
a backing store is not acceptable in some situation. Page
wiring is used.

The another is to forcibly mark a H/W mapping to be
permanent in an MMU unit. This is a rather odd oper-
ation. Unix’s virtual memory management has had an
assumption that the number of the H/W mapping entries
registered in an MMU is limited. The kernel instead keeps
mapping information, which is needed to rebuild a H/W
mapping entry, in local memory. In other words, H/W
mappings in MMUs are assumed to be never persistent.
The H/W mapping wiring violates this basic assumption.

XIP and device pages in general are wired as never re-
tired into a backing store. However, because of the con-
fusions of ”wiring” handling described abve,XIP avoids
wiring where possible by telling the caller that the wiring
request was failed.

11.5 Filesystem optimization

(To be done.)

11.6 Memory disk support

NetBSD has a pseudo block device called md(4), which
emulates backing store using kernel memory. The content
of md(4) is initialized either statically (mdsetimage(8)) or
dynamically (typically by boot loader, or kernel’s early
boot code) before it’s being mounted. When a program
in a filesystem mounted on an md(4) block device is ex-
ecuted, the kernel allocates page caches then fills them
by reading the backing store, that is the md(4)’s memory.
This means the kernel has two copies of the program in
memory. If XIP is applicable to this situation, we could
omit page caches and save memory usage.

The problem is that the current implementation of XIP
assumes device pages, which are never part of kernel
memory. They’re exclusive. The current md(4) imple-
mentation uses kernel memory as backing store, which
contradicts the assumption made by XIP. A possible so-
lution to this is to exclude md(4)’s backing store memory
region from kernel’s memory. Thus kernel is not aware
of the md(4) memory region, and it recognizes the region
as ”unmanaged”. Later if the region is registered as de-
vice physical segment, kernel will recognize the region as
”managed device pages”.

The solution describe above needs total rewrite of the
md(4) driver and other related tools, which is beyond this

paper. Thus this is reserved as a future work.

11.7 Dynamically linked programs

Dynamically linked programs are executed with help of
the dynamic linker which reads the program header, loads
(mmap()’s) the given program’s sections, then reads the
symbol table to resolve unresolved symbols; which means
the dynamically linked programs’ image copied onto
memory are potentially modified by the dynamic linker
before the real program execution starts.

However, it’s possible to avoid modifications of read-
only text segments by making all the code referencing ex-
ternal symbols lookup the indirect symbol lookup table.
This means that the code (text) segment is not modified,
but only the reloc is. Such a program can be generated
with compilers and linkers. Dynamic linkers also need
changes to handle those relocs. These are specific to ar-
chitectures and beyond this paper. We’re planning to con-
vert all architectures to support such a feature in the fu-
ture.

11.8 Kernel XIP

Kernel is already almostXIP, except that the details are
very machine-dependant, and kernel can’t docopy-on-
write. Users need to map the kernel text ROM range at the
right address. This has to be done in either boot loaders
or machine-dependent early initialization code. In either
cases, this is beyond the scope of this paper which deals
with machine-independent parts.

11.9 Mount option handling

As already explained, ourXIP implementation is neutral
to filesystem. However, we lack a consistent way to pass
mount options from mount commands to filesystems. We
have to change the mount option handling code in every
filesystem to be used forXIP. There is an on-going work
to centralize such code in one place.

11.10 Zero’ed page handling

XIP is not the only users who need a zero’ed page in the
kernel. zero(4) is a pseudo device which is shown as
/dev/zero and read as 0s. It fills a given user’s buffer
with 0s. This can be efficiently processed if the kernel has
a page-sized region filled with 0s.

Another use is, likeXIP addresses, filesystem in gen-
eral encounters unallocated blocks, which should be seen
to users as 0s.NetBSDfills pages caches of unallocated
blocks with 0s by callingmemset() using the temporar-
ily allocated kernel address space. (This is one of the
reasons the kernel has to allocate a kernel virtual space

14



(pager map()) while handling I/O, even for direct I/O.)
This should be rewritten to use the pre-allocated zero’ed
page to avoid access to user’s buffer via remapped kernel
address space.

As of writing this, NetBSDhas no consistent way to
manage such a pre-allocated zero’ed page. We’re planing
to address this soon after theXIP is merged into the trunk.

11.11 Development environment

While our XIP implementation needs nothing special to
develop aXIP capable system, the interface of creating a
crunched program is a little inconvenient to use. It was de-
velopped mainly for creating installation media, like flop-
pies, where available size of images is very limited. The
infrastructure to build crunch binaries is a mixture of BSD
make and AWK scripts, which is totally different than the
one to build usual, non-crunched programs. The helper
scripts parse a user’s configuration file5 and generate glue
makefiles on-the-fly, which make programs read and de-
cide how to build a special program ready to be linked
against a final crunched program. The build procedure
is very unclear. It also means that users have to main-
tain build procedures of crunched programs in scattered
places.

Crunch binary is actually something like a collection
of static libraries (archives); programs are compiled as a
statically linkable object, with unnecessary symbols are
hidden or renamed so that they won’t conflict with other
programs which will be crunched together into a single
crunched program.

This situation could be simplified by moving the knowl-
edge of the build procedure into a single place, that is, the
system wide make file templates (/usr/share/mk). The
problem is where to install intermedia object files; they
are neither usual programs nor static libraries. If we once
establish a consensus how to handle these files, the crunch
build procedure would be done in almost the same way as
the default build procedure for a collection of individual
programs and libraries.

12 Conclusion

We have successfully implementedXIP into the UVM
without losing any existing functionality nor any major
code impact.UVM’s 2 layered representation avoids un-
necessary data copy across proccess fork.UBC addresses
data consistency ofmmap() and I/O of device pages.
While designing all the issues we’ve realized many ex-
isting design issues inUVM and found some interesting
ideas which will benefit contexts beyondXIP.

5The configuration is called a ”list” file, meaning we don’t know how
to call it other than the file name itself.

13 Acknowledgement

Matt Thomas<matt@3am-software.com> kindly sug-
gested this topic, gave me the overall development di-
rection, and pointed out many failures of my design.
Chuck Silvers<chuq@chuq.com> taught me UVM /
UBC behavioural details and the expected problems
of this work. Noriyuki Soda<soda@sra.co.jp>,
Antti Katee<pooka@cs.hut.fi>, and Masanari Tsubai
<tsubai@segv.jp> gave me many useful comments in
discussions at AsiaBSDCon 2009 and/or Japan NetBSD
Users Group Annual Meeting. I’d also thank everyone
who encouraged me on ICB.

References

[1] Charles D. Cranor and Gurudatta M. Parulkar. The
uvm virtual memory system. InATEC ’99: Pro-
ceedings of the annual conference on USENIX An-
nual Technical Conference, pages 9–9, Berkeley, CA,
USA, 1999. USENIX Association.

[2] Chuck Silvers. Ubc: An efficient unified i/o and mem-
ory caching subsystem for netbsd. InUSENIX Annual
Technical Conference, FREENIX Track, pages 285–
290, 2000.

[3] Sören Wellḧofer. Application execute-in-place (xip)
with linux and axfs. sep 2009.

15


