

http://people.freebsd.org/~sbruno/B
SDCan_TMODE_Preso.pdf

Implementation of TARGET_MODE
applications

BSDCan 2009
Sean Bruno

sbruno@freebsd.org

How we used TARGET_MODE in the kernel to
create an interesting product

Kernel Hacking Track

What Is Target Mode?

● Basic interpretation
● Turns a BSD box into an external HD via kernel

compiler options.
– Initiator

● An HBA in hardware or software that accesses resources across
a bus.

– Target
● A resource on a bus that is accessed by an initiator.

– Bus
● SCSI, FireWire, TCP/IP(for iSCSI), ATA over Ethernet,
● Fibre Channel, Fibre Channel over Ethernet
● The media used in Initiator-Target communication

Example Targets In Use

● MiraLink Product Lines (Shameless Plug)
● Acts like a hard drive
● Intercepts blocks and buffers them
● Copies blocks to duplicate unit

– Completely Agentless
● Use your own hard disk
● Fiber Channel volume “import”
● Easy to use and “abuse”

– More on this later

Example Targets In Use

● Mac Book FireWire Target Mode
● On Power up, hold the letter 'T' until FireWire logo

appears
● Now it's a read-only FireWire drive enclosure
● You can access the DVD drive across FireWire

● Linux iSCSI Target
● Software server
● Supports multiple targets
● Support multiple accesses

How Do I Do That?

● Requires some kernel tweaks
● Targ(4)
● driver specific kernel options
● AIO(4) support for scsi_target example code

● Requires something to be used as a target
● You still need a disk or file to use as your target

device to be presented on the bus

● Appropriate BUS interface board.
● Protocol specifications for your BUS

● e.g. SBP-2, SAM-2

Is That All?

● A good mentor, I've had several awesome
ones:
● Justin Gibbs, Scott Long, Hidetoshi Simokawa
● freebsd-scsi@, freebsd-firewire@ mailing lists
● freebsd-hackers@ if you are feeling dangerous.

● Don't Panic.
● Your machine will do it for you.

How does that work again?

● Kernel Configuration
● TARG(4): The Interface to CAM

– You'll need to enable.
– It's where the “magic” happens.
– Provides a fake device to attach or open

● e.g. /dev/targ0

– Gives your application access to “raw” data
– Application must implement target protocol

● e.g. SAM-2, SBP-2, SAS

– Link Layer protocols are handled by card/driver
● FireWire board and FireWire driver handle the data
● You must do something compliant with SBP-2

– Read the man page, it's got good stuff!

How does that work again? (cont)

● Kernel Configuration
● TARGBH(4): Black Hole

– Allows non-existent targets to be NACKED
– Makes the target play nice on the BUS
– Provides a fake device to attach or open

● e.g. /dev/targbh0

● AIO(4)
– Required kernel option by scsi_target
– May be ok to leave out, but I sure haven't tested without

it. You mileage may vary.

How does that work again? (cont)

● Kernel Configuration
● Choose your target interface

– aic7xxx U160 SCSI
– qla2342 2G Fibre Channel
– qla1040 or other Qlogic SCSI boards
– Random FireWire Adapter

● Each driver has it's own target mode flags
– Or is a separate driver on it's own, e.g. sbp_targ

Drivers, Drivers, Drivers

● ahc(4)
● Options AHC_TMODE_ENABLE XXX
● 0xNN is a bitmask of the the units you want to

activate
– 0x25 enables unit 0, 2 and 5 for target mode.
– 0x8a enables units 1, 3 and 7 for target mode.
– Go ahead, convert it to binary, I'll wait.

● Once enabled, different firmware is loaded
● SCSI card behaves differently

Drivers, Drivers, Drivers, cont.

● isp(4)
● Options ISP_TARGET_MODE
● No magic bitmask here
● Once enabled, different firmware is loaded
● 2G and old school qla1040 SCSI cards supported

– Probably intermediate chipsets are supported as well
– No. I am not holding some magic 4/8G code that works
– Qlogic changed interface for 4/8G chipsets

Drivers, Drivers, Drivers, cont.

● Isp(4) ... cont
● Qlogic changed interface for 4/8G chip sets
● Overall, this is a good thing
● More control for targets and initiators in the host

operating system

Drivers, Drivers, Drivers, cont.

● FireWire(4)
● FireWire has a lot of parts

– sbp(4) is the initiator, this should be disabled
– sbp_targ(4) is the target, this should be enabled
– All other normal firewire drivers should be enabled

● firewire, fwohci etc.

– Sbp(4) and sbp_targ(4) might work together. Untested
● 200/400/800 should work fine in -CURRENT

Drivers, Drivers, Drivers, cont.

● Stuff I'm Ignoring
● Target code exists in MPT(4)
● NetBSD software iSCSI Target
● Proprietary targets
● Embedded USB Device Controllers

● We can talk later about these items.

What Could Possibly Go Wrong?

● Serial Console
● You'll need it. I promise.

● Get friendly with the debugger
● You'll be meeting it very frequently

● Be patient
● You'll be rebooting a lot

● My FireWire Kernel Configuration
● Http:///

share/examples/scsi_target

● Userland code
● Great example of how to get started
● Instructions right in the man page.
● Create a dummy file with dd if=/dev/zero
● Compile scsi_target
● Run it as root

– ./scsi_target 0:0:0 /var/tmp/myfile
● Now, connect to a new machine.

– If all went well here, I can stop sweating.

SBP-2 and SAM-2

● SBP-2 is a SAM-2 like protocol
● Not a fully featured as SAM-2
● Really, only for storage devices
● Close enough and the protocol is freely available
● Unlike the rest of the IEEE FireWire protocols

● SAM-2
● Big protocol specification
● More Features and interfaces supported
● Draft standards are available on the T10 committee

web site (ANSI)

It's just an external hard drive

● Seriously, that's all we've done here.
● More code coming down the pipe

● Enhancements to scsi_target
● Overhaul of sbp_targ is imminent
● Enhancements to sys/cam/scsi_target

● Once you have access to the data
● Interesting ideas come to you
● e.g. block level snap shots, backups completed by

the drive instead of the host

Future Development

● Multiple LUN Support
● Single interface to multiple targets

● Multiple simultaneous target support
● Fibre Channel and FireWire target at the same time

● Simultaneous SBP and SBP_TARG use
● iSCSI Software Target
● USB Mass Storage Hardware Target

● Needs USB Device Controller Support

Special Thanks

● Justin Gibbs – many long hours of questions
● Scott Long – my src commit mentor
● Hidetoshi Simokawa – FireWire guidance
● Dan Langille and the BSDCan folks!
● Matt Jacobs, ISP
● FreeBSD Foundation

Questions?

● Keep 'em simple, I'm not as smart as I am
pretty.

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22

