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Problem Statement (I)

During the last twenty years, many vulnerabilities were found in a number of 
implementations of the TCP & IP protocols, and in the protocols themselves, 
which lead to the publication of a number of vulnerability reports by vendors 
and CSIRTs. 
Documentation of these vulnerabilities and the possible mitigations has been 
spread in a large number of documents. 
Some online documentation proposes counter-measures without analyzing 
their interoperability implications on the protocols. (i.e., wrong and/or 
misleading advice). See e.g., Silbersack’s presentation at BSDCan 2006).
While there had been a fair amount of work on TCP security, the efforts of the 
security community had never reflected in changes in the corresponding IETF 
specifications, and sometimes not even in the protocol implementations.



Problem statement (II)

It is very difficult to produce a secure/resilient implementation of the TCP/IP 
protocols from the IETF specifications.
There was no single document that provided a thorough security assessment 
of the TCP and IP protocols, and that tried to unify criteria about the security 
implications of the protocols, and the best possible mitigation techniques.
There was no single document that served as a complement to the official 
IETF specifications, in the hope of making the task of producing a secure 
implementation of the protocols easier.
New implementations of the protocols re-implement bugs/vulnerabilities 
found in older implementations.
New protocols re-implement mechanisms or policies whose security 
implications have been known from other protocols (e.g., Router Header 
Type 0 in IPv6 vs. IPv4 source routing).



Project overview

During the last few years, CPNI – formerly NISCC – embarked itself in a 
project to fill this gap. 
The goal was to produce a set of documents that would serve as a security 
roadmap for the TCP and IP protocols, with the goal of raising awareness 
about the securty implications of the protocols, so that existing 
implementations could be patched, and new implementations would mitigate 
them in the first place. 
This set of documents would be updated in response to the feedback 
received from the comunity.
Finally, we planned to take the results of this project to the IETF, so that the 
relevant specifications could be modified where needed.



Ouput of this project

Security Assesment of the Internet Protocol
In July 2008 CPNI published the document “Security Assessment of the Internet 
Protocol” -- consisting of 63 pages, which include the results of our security 
assessment of IPv4.
Shortly after, we published the same document as an IETF Internet-Draft (draft-gont-
opsec-ip-security-00.txt)
The Internet I-D was finally adopted (by the end of 2008) by the IETF.
Security Assessment of the Transmission Control Protocol (TCP)
In February 2009 CPNI published the document “Security Assessment of the 
Transmission Control Protocol (TCP)” -- consisting of 130 pages, which include the 
results of our security assessment of IPv4.
Shortly after, we published the same document as an IETF Internet-Draft (draft-gont-
tcp-security-00.txt)
There is currently a very heated debate about this document at the IETF between 
those that support the idea that the TCP specifications should be maintained/updated, 
and those who ague that they should be left “as is”.
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Security Implications of the 
Identification field



IP IDentification field 

The IP Identification (IP ID) field is used by the IP framentation mechanism.
The tuple {Source Address, Destination Address, Protocol, Identification} 
identifies fragments that correspond to the same original datagram, and thus 
the tuple cannot be simultaneously used for more than one packet at any 
given time.
If a tuple {Source Address, Destination Address, Protocol, Identification} that 
was already in use for an IP datagram were reused for some other datagram, 
the fragments of these packets could be incorrectly reassembled at the 
destination system.
These “IP ID collisions” have traditionally been avoided by using a counter for 
the Identification field, that was incremented by one for each datagram sent.
Thus, a specific IP ID value would only be reused when all the other values 
have already been used.



Security implications of the Identification field

If a global counter is used for generating the IP ID values, the IP Identification 
field could be exploited by an attacker to:
Infer the packet transmission rate of a remote system
Count the number of systems behind a NAT
Perform a stealth port scanning



Randomizing the Identification field

In order to mitigate the security implications of the Identification field, the IP 
ID should not be predictable, and should not be set as a result of a global 
counter.
However, it has always been assumed that trivial randomization would be 
inappropriate, as it would lead to IP ID collisions and hence to interoperability 
problems.
Some systems (e.g., OpenBSD) have empoyed PRNG schemes to avoid 
quick reuse of the IP ID values. However, they have been found to produce 
predictable sequences.
An analysis of the use of fragmentation for connection-oriented (CO) and for 
connection-less (CL) protocols can shed some light about which PRNG could 
be appropriate.



Randomizing the IP ID: CO protocols

Connection-oriented protocols:
The performance implications of IP fragmentation have been known for about 
20 years.
Most connection-oriented protocols implement mechanisms for avoiding 
fragmentation (e.g., Path-MTU Discovery)
Additionally, given the current bandwidth availability, and considering that the 
IP ID is 16-bit long, it is unacceptable to rely on IP fragmentation, as IP ID 
values would be reused too quikly regardless of the specific IP ID generation 
scheme.
We therefore recommend that connection-oriented protocols not rely on IP 
fragmentation, and they randomize the value they use for the IP Identification 
field of outgoing segments.



Randomizing the IP ID: CL protocols

Connection-less protocols
They typically lack of:
flow control mechanisms
packet sequencing mechanisms
reliability mechanisms
The scenarios and applications for which they are used assume that:
Applications will be used in environments in which packet-reordering is 
unlikely.
The data transfer rates will be low enough that flow control is unnecessary
Packet loss is not important and probably also unlikely.
We therefore recommend connection-less protocols to simply randomize the 
IP ID.
Applications concerned with this policy should consider using a connection-
oriented transport protocol.
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Overview of the TCP 
connection-establishment 
and connection-termination 
mechanisms



Connection-establishment

The connection establishment phase usually involves the exchange of three 
segments (hence it’s called “three-way handshake).

Once the three-way handshake has completed, the sequence numbers (and other parameters) will be properly synchronized, and the data transfer can proceed.



Connection termination

The connection termination phase usually involves the exchange of four 
segments

The TCP that begins the connection-termination phase (Host A) usually stays in the TIME-WAIT state for 4 minutes, while the other end-point moves to the fictional CLOSED state (i.e., it does not keep any state for this connection



Collision of connection-id’s

Due to the TIME-WAIT state, it is possible that when a connection-request is sent to a 
remote peer, there still exists a previous incarnation of that connection in the TIME-
WAIT state. In that scenario, the connection-request will fail.

It is clear that the collission of connection-id’s is undesirable, and thus should be avoided.

   RFC 793                                                     RFC 1337
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TCP Source Port & 
Destination Port



TCP port numbers

Trust relationships
While some systems require superuser privilages to bind port numbers in the range 
1-1023, no trust should be granted based on TCP port numbers.
Special port numbers
The Sockets API uses port 0 to indicate “any port”. Therefore, a port number of 0 is 
never used in TCP segments.
Port 0 should not be allowed neither as a source port nor as a destination port.
Ephemeral port range
The IANA has traditionally reserved the range 49152-65535 for the Dynamic and/or 
Private ports (i.e., the ephemeral ports)
However, different TCP implementations use different port ranges for the ephemeral 
ports (e.g., 1024-4999, 32768-65535, 49152-65535, etc.) 
We recommend TCP implementations to use the range 1024-65535 for the ephemeral 
ports.



Ephemeral port selection algorithms

When selecting an ephemeral port, the resulting connection-id (client 
address, client port, server address, server port) must not be currently in use. 
If there is currently a local TCB with that connection-id, another ephemeral 
port should be selected, such that the collision of connection-id’s is solved.
However, it is impossible for the local system to actually detect that there is 
an existing communication instance in a remote system using that 
connection-id (such as a TCP connection in the TIME-WAIT state). 
In the event the selection of an ephemeral port resulted in connection-id that 
was currently in use at the remote system, a “collision of connectio-id’s” 
would occur.
As a result, the frequency of reuse of connection-id’s should be low enough 
such that collisions of connection-id’s are minimized.



TCP Port Randomization

Obfuscation of the TCP ephemeral ports (and hence the connection-id) helps 
to mitigate blind attacks against TCP connections
The goal is to reduce the chances of an off-path attacker from predicting the 
pehemeral ports used for future connections.
Simple randomization has been found to lead to interoperability problems 
(connection failures). (See Silbersack’s presentation at BSDCan 2006).
A good port randomization algorithm should:
Minimize the predictability of the ephemeral port numbers by an off-path 
attacker.
Avoid quick re-use of the connection-id’s
Avoid the use of port numbers that are needed for specific applications (e.g., 
port 80).



A good port randomization algorithm

The IETF Internet-Draft “Port Randomization” [Larsen, M. and Gont, F., 
2008] describes an ephemeral port selection algorithm that’s based on an 
expression introduced by Steven Bellovin for the selection of ISN’s:

Port = counter + F(local_IP, remote_IP, remote_port, secret_key)

It separates the port number space for connecting to different end-points
It has been found (empyrically) to have better interoperability properties 
than other obfuscation schemes
It ships with the Linux kernel already.



Sample output of the algorithm

Sample output of the recommended algorithm.

Nr. IP:port offset min_ephlemeral max_ephemeral next_ephemeral port

#1 128.0.0.1:80 1000 1024 65535 1024 3048

#2 128.0.0.1:80 1000 1024 65535 1025 3049

#3 170.210.0.1:80 4500 1024 65535 1026 6550

#4 170.210.0.1:80 4500 1024 65535 1027 6551

#5 128.0.0.1:80 1000 1024 65535 1028 3052



  

TCP Sequence Number



Initial Sequence Numbers (I)

RFC 793 suggests that ISN’s must result in a monotonically increasing 
sequence (e.g., from a global timer), so that the sequence number space of 
different connections does not overlap. From that point on, it has been 
assumed that the generation of ISN’s such that they are monotonically 
increasing is key to avid that corruption in TCP (that could result from “old” 
segments received for a new connection).
However, protection against old segments is really provided in TCP by two 
other mechanisms that have nothing to do with the ISN’s:
“Quiet time concept”: After bootstrapping, a system must refrain from sending 
TCP segments for 2*MSL.
TIME-WAIT state: When a TCP connection is terminated, the end-point that 
performed the “active close” must keep the connection in the TIME-WAIT 
state for 2*MSL, thus ensuring that all segments disapear from the network 
before a new incarnation of the connection is created.



Initial sequence numbers (II)

In the traditional BSD implementation, the ISN generator was initilized to 1 
during system boot-strap, and was incremented by 64000 every half second, 
and by 64000 for each established connection.
Based on the assumption that ISN’s are monotonically increasing, BSD 
implementations introduced some heuristics for allowing quick reuse of the 
connection-ID’s. If a SYN is received for a connection that is in the TIME-
WAIT state, then,
If the ISN of the SYN is larger than the last sequence number seen for that direction of 
the data transfer (SEG.SEQ > RCV.NXT), the TCB in the TIME-WAIT state is 
removed, and another TCP is created in the SYN-RECEIVED state.
Otherwise, the processing rules in RFC 793 are followed. 
It is very interesting to note that this hack was motivated by the use of the r* 
commands. That is, for short-lived connections, that typically transfer small 
amounts of data, and/or that typically use a low transfer rate.. Otherwise, 
these heuristics fail.



ISN randomization

The implications of predictable ISN generators have been known for a long 
time.
ISN obfuscation helps to mitigate blind-attacks against TCP connections.
The goal of ISN obfuscation is to prevent off-path attackers from guessing 
the ISNs that will be used for future connections.
A number of TCP implementations (e.g., OpenBSD) simply randomize the 
ISN, thus potentially causing the BSD hack to fail. In that scenario, 
connection failures may be experienced.
We recommend generation of the ISNs as proposed by S. Bellovin in RFC 
1948:
          ISN = M + F(localhost, localport, remotehost, remoteport, secret)
This scheme produces separates the sequence number space for each 
connection-id, and generates ISNs that are monotonically-increasing within 
their respective sequence number spaces.



  

TCP Window



TCP Window

The TCP Window imposes an upper limit on the maximum data transfer rate 
a TCP connection can achieve
               Maximum Transfer Rate = Window / Round-Trip Time
Therefore, under ideal network conditions (e.g., no packet loss), the TCP 
Window should be, at least:
                           TCP Window >= 2 * Bandwidth * Delay
A number of systems and applications uset arbitrarily large TCP Windows, in 
the hope of avoiding the TCP Window from limiting the data transfer rate.
However, larger windows increase the sequence number space that will be 
considered valid for incoming connections, therefore increasing the chances 
of an off-path attacker of successfully performing a blind-attack against a 
TCP connection.
Advice: If an application doesn’t require high-throughput (e.g., H.245), use a 
small window (e.g., 4 KBytes).



  

TCP Urgent mechanism
(URG flag and Urgent Pointer)



Urgent mechanism

The urgent mechanism provide a means for an application to indicate an 
“interesting point” in the data stream (usually a point in the stream the 
receiver should jump to). It is not meant to provide a mechanism for out-
of-band (OOB) data.
However, most stacks implement the urgent mechanism as out of band data, 
putting the urgent data in a different queue than normal data.



Ambiguities in the semantics of the UP

There’s a mismatch between the IETF specifications and virtually all real 
implementations. 
“the urgent pointer points to the last byte of urgent data” (IETF) vs. “the 
Urgent Pointer points to the byte following the last byte of urgent data” 
(virtually all implementations)
Most implementations nevertheless include a (broken) system-wide toggle to 
switch between these two possible semantics of the Urgent Pointer

 IETF specs                                   Virtually all 
implementations



Urgent data as OOB data

TCP/IP stacks differ in how they implement Urgent Data as OOB.
Virtually all stacks only accept a single byte of OOB data
Other stacks (Microsoft’s) accept OOB data of any length (*).

(*) It has been reported that they do not enforce limits on the amount of OOB queued!

Virtually all stacks                                                   Microsoft’s 
stack



Urgent data in the current Internet

Some middle-boxes (e.g., Cisco Pix), by default, clear the URG flag and set 
the Urgent Pointer to zero, thus causing the “urgent data” to become “normal 
data”.
It is clear that urgent indications are not reliable in the current Internet.



Advice on the urgent mechanism

All the aforementioned issues lead to ambiguities in how urgent data may be 
interpreted by the receiving TCP, thus requiring much more work on e.g., 
NIDS.
As discussed before, the urgent mechanism is unreliable in the current 
Internet (i.e., some widely deployed middle-boxes break it by default).
Advice: Applications should not rely on the urgent mechanism.
If used,
It should be used just as a performance improvement
Applications should set the SO_OOBINLINE socket option, so that “urgent 
data” are procesed inline.
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MSS (Maximum Segment Size) option

Used to indicate to the remote TCP the maximum segment size this TCP is 
willing to receive.
Some values are likely to cause undesirable behavior
A value of 0 might cause a connection to “freeze”, as it would not allow any 
data to be included in the TCP payload.
Other small values may have a performance impact on the involved systems. 
e.g., they will result in a higher overhead and higher interrupt rate
The security implications of the MSS were first discussed in 2001, but the 
community never pruduced any mitigations.
Advice: Sanitize the MSS option as follows:

Sanitized_MSS = max(MSS, 536)
Eff.snd.MSS = min(Sanitized_MSS+20, MMS_S) - TCPhdrsize - IPoptionsize



Timestamps option

TCP timestamps are used to perform Round-Trip Time (RTT) measurement 
and Protection Against Wrapped Sequence Numbers (PAWS)
For the purpose of PAWS, timestamps are required to be monotonically 
increasing. However, there’s no requirement that the timestamps be 
monotonically increasing accross TCP connections.
Generation of timestamps such that they are monotonically increasing allows 
an improved handling of connection-requests (SYN segments) when there’s 
a TCB in the TIME-WAIT state.
Many stacks select the TCP timestamps from a global timer, which is 
initialized to zero upon system bootstrap.



Security implications of TCP timestamps

Predictable TCP timestamps have a number of security implications:
In order to perform a blind attack against a TCP connection that employs 
TCP timestamps, an attacker must be able to guess or know the timestamp 
values in use.
By forging a TCP segment with a timestamp that is larger than the last 
timestamp received for the target connection, an attacker could cause the 
conenction to freeze.
Therefore, system-wide TCP timestamps are discouraged.
Furthermore, if the timestamps clock is initilized to a fixed value at system 
bootstrap, the timestamps will leak the system uptime.



Advice on TCP timestamps

Advice: Generate timestamps with a RFC1948-like scheme:

timestamp = T() + F(localhost, localport, remotehost, remoteport, secret_key)

This expression provides a per-destination-endpoint monotonically-increasing 
sequence, thus aenabling the improved handling of SYN segments while 
avoiding an off-path attacker from guessing the timestamp values used for 
new connections. 
This timestamps generation scheme has been incorporated in Linux
It will most likely be adopted by the IETF in the revision of the TCP 
timestamps option RFC.



  

Connection-flooding 
attacks



Some variants of connection-flooding attacks

SYN-flood: aims at exhausting the number of pending connections for a 
specific TCP port
Naphta: aims at exhausting the number of ongoing connections
FIN-WAIT-2 flood: aims at exhausting the number of ongoing connections, 
with connections that are not controlled by a user-space process.
Netkill: aims at exhausting system memory used for the TCP retransmission 
by issuing a large number of connection requests followed by application 
requests, and abandoning those connections.



Naphta

The creation and maintenance of a TCP connection requires system memory 
to maintain shared state between the local and the remote TCPs.
Given that system memory is a limited resource, this can be exploited to 
perform a DoS attack (this attack vector has been referred to as “Naphta”).
In order to avoid wasting his own resources, an attacker can bypass the 
kernel implementation of TCP, and simply craft the required packets to 
establish a TCP connection with the remote endpoint, without tying his own 
resources.
Counter-measures
Enforcing per-user and per-process limits
Limiting the number of simultaneous connections at the application
Limiting the number of simultaneous connections at firewalls.
Enforcing limits on the number of connections with no user-space controlling 
process.



A typical connection-termination scenario:

Problems that may potentially arise due to the FIN-WAIT-2 state
There’s no limit on the amount of time a connection can stay in the FIN-
WAIT-2 state
At the point a TCP gets into the FIN-WAIT-2 state there’s no user-space 
controlling process

FIN-WAIT-2 flooding attack



Countermeasures for FIN-WAIT-2 flooding

Enforce a limit on the duration of the TIME-WAIT state. E.g., Linux 2.4 
enforces a limit of 60 seconds. Once that limit is reached, the connection is 
aborted.
The counter-measures for the Naptha attack still apply. However, the fact that 
this attack aims at leaving lots of connections in the FIN-WAIT-2 state will 
usually prevent an application from enforcing limits on the number of ongoing 
connections.
Applications should be modified so that they retain control of the connection 
for most states. This can be achieved by replacing the employing a 
conbination of the shutdown(), setsockopt(), and close().
TCP should also enforce limits on the number of ongoing connections with no 
user-space controlling process.



  

Security implications of the 
TCP send and receive 
buffers



TCP retransmission (send) buffer

The Netkill attack aims at exhausting the system memory used for the TCP 
retransmission buffer.
The attacker establishes a a large number of TCP connections with the target 
system, isues an application request, and abandons the aforementioned 
connections.
The target system will not only waste the system memory used to store the 
TCB, but also the memory used to queue the data to be sent (in response to 
the application request).



Counter-measures for the Netkill attack

The countermeasures for the Naphta attack still apply.
In addition, as the malicious connections may end up in the FIN-WAIT-1 
state, applications should be modified so that they retain control of the 
connection for most states. This can be achieved by replacing the employing 
a conbination of the shutdown(), setsockopt(), and close().
When resource exhaustion is imminent, a connection-prunning policy might 
have to be applied, paying attention to
Connections that have advertised a 0-window for a long time
Connections for which the first few windows of data have been retransmitted 
a large number of times
Connections that fall in one of the previous categories, and for which only a 
small amount of data have been successfully transferred since their 
establishment.



TCP reassembly (receive) buffer

When out-of-order data are received, a “hole” momentarily exists in the data 
stream which must be filled before the received data can be delivered to the 
application making use of TCP’s services.

This mechanism can be exploited in at least two ways:
An attacker could establish a large number of TCP connections and 
intentionally send a large amount of data on each of those connections to the 
receiving TCP, leaving a hole in the data stream so that those data cannot be 
delivered to the application.
Same as above, but the attacker would send e.g., chunks of one byte of data, 
separated by holes of e.g., one byte, targeting the overhead needed to hold 
and link each of these chunks of data.



Improvements for handling out-of-order data

TCP implementations should enforce limits on the amount of out-of-order 
data that is queued at any time. 
TCP implementations should enforce limits on the maximum number of 
“holes” that are allowed for each connection.
If necessary, out-of-order data could be discarded, with no effect on 
interoperability. This has a performance penalty, though.
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Overview

A number of tools, such as nmap, can perform detect the operating system in 
use at a remote system, via TCP/IP stack fingerprinting
This is achived by analyzing the response of the TCP/IP stack to a number of 
probes that different stack process in different ways
The precision of their results is amazingly good. – It shouldn’t be that good!
Question: Wouldn’t it be possible for these TCP/IP stacks to respond to most 
of these probes in exactly the same way?



FIN probe

The IETF specifications leave it unspecified how TCP should respond when a 
packet that does not have the SYN or ACK bits set is received for a 
connection that is in the LISTEN state.
Some stacks respond with an RST, while others silently drop the segment.
Advice: reject with an RST those TCP segments that do not have the SYN or 
ACK bits set and that are received for a connection in the LISTEN state. In all 
other cases, follow the rules in RFC 793.



Bogus flag test

The attacker sends a TCP segment with at least one of the Reserved bits set.
Some stacks ignore this field, while others reset the connection, or reflect the 
field in the TCP segment sent in response.
Advice: Ignore any flags not supported, and not reflect them if a TCP 
segment is sent in response to the one just received.



RST sampling

Different implementations differ in the Acknowledgement Number they use in 
response to segments received for connections in the CLOSED state.
If the ACK bit in the incoment segment is off, the response should be:

<SEQ=0><ACK=SEG.SEQ+SEG.LEN+flags><CTL=RST, ACK>

If the ACK bit in the incoming segment is on, the response should be:

<SEQ=SEG.ACK><ACK=SEG.SEQ+SEG.LEN+flags><CTL=RST, ACK>

That is, the Acknowledgment number should be set to the SEQ of the 
incoming segment, plus the segment length, and BE incremented by one for 
each flag that set in the orginal segment that occupies on byte in the 
sequence number space.



Port-0 probe

The Sockets API uses port 0 to indicate “any port”. Therefore, a port number 
of 0 is never used in TCP segments.
Different implementations differ in how they process TCP segments that use 
0 as the Source and/or Destination port (e.g., some will allow their use, some 
will reject incoming connection requests, and some will silently drop the 
incoming connection requests). This has been exploited for remote OS 
detection via TCP/IP stack fingerprinting.
Advice: reject with an RST TCP segments that use port number 0 (that do not 
have the RST bit set).



TCP option ordering

Different TCP implementations enable different options (by default) in their 
TCP connections.
Additionally, they frame the options differently.
There may be reasons for a TCP to include or not include some specific 
options. On the other hand, how to frame the options is, for the most part, 
simply a matter of choice.
More work is needed to get consensus on which options should be included 
by default, and how to frame them.
An additional benefit resulting from arriving to such consensus is that stacks 
could implement “TCP option prediction” (i.e., tune the code so that 
processing of packets with the usual options in the usual order is faster).



Additional fingerprinting techniques

Other parameters can be sampled with the intent to correlate them with 
specific implementations of TCP:
ISN: While we recommend implementation of the scheme described in 
RFC1948, some stacks could sifferent in the granularity of the timer that they 
use.
Initial window: Different stacks use different values for the TCP Window 
advertised in SYN segments. More work is needed to possibly arrive to 
consensus on the default value to be used.
 Retransmission TimeOut (RTO): Different stacks use different values for 
this parameter. However, of all the fingerprinting techniques, this is the one 
that is less of a concern, as its precision is highly-dependent on the network 
conditions.
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Conclusions and Further Work

Working on TCP/IPv4 security in 2005/2008 probably didn’t have much 
glamour. However, this was something that needed to be done.
Unfortunately, many people will not read past the preface of the documents, 
but will nevertheless claim that “there’s nothing new in this documents”.
There seems to be resistance in the IETF to update/fix the specs. – Get 
involved!
We’re aware of some efforts in the vendor community to improve the security/
resiliency of TCP. Not sure what the end result will be.
Your feedback really matters.



Questions?
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