

Results of a Security
Assessment of the TCP and IP
Protocols and Common
Implementation Strategies

Fernando Gont
project carried out on behalf of the

UK CPNI

BSDCan 2009 Conference
May 8-9, 2009, Ottawa, Canada

Agenda (I)

Project overview
Internet Protocol version 4
Identification field
Transmission Control Protocol (TCP)
Overview of basic mechanisms
Security implications of a number of header fields: TCP port numbers, TCP
Sequence Number, TCP Window
Security implications of the Urgent mechanism
Security implications of some TCP options: Maximum Segment Size (MSS)
option, and Timestamps option
Discussion of some TCP connection-flooding attacks
Discussion of some attacks against TCP send and receive buffers
Discussion of some TCP/IP stack fingerprinting techniques.
Conclusions

Problem Statement (I)

During the last twenty years, many vulnerabilities were found in a number of
implementations of the TCP & IP protocols, and in the protocols themselves,
which lead to the publication of a number of vulnerability reports by vendors
and CSIRTs.
Documentation of these vulnerabilities and the possible mitigations has been
spread in a large number of documents.
Some online documentation proposes counter-measures without analyzing
their interoperability implications on the protocols. (i.e., wrong and/or
misleading advice). See e.g., Silbersack’s presentation at BSDCan 2006).
While there had been a fair amount of work on TCP security, the efforts of the
security community had never reflected in changes in the corresponding IETF
specifications, and sometimes not even in the protocol implementations.

Problem statement (II)

It is very difficult to produce a secure/resilient implementation of the TCP/IP
protocols from the IETF specifications.
There was no single document that provided a thorough security assessment
of the TCP and IP protocols, and that tried to unify criteria about the security
implications of the protocols, and the best possible mitigation techniques.
There was no single document that served as a complement to the official
IETF specifications, in the hope of making the task of producing a secure
implementation of the protocols easier.
New implementations of the protocols re-implement bugs/vulnerabilities
found in older implementations.
New protocols re-implement mechanisms or policies whose security
implications have been known from other protocols (e.g., Router Header
Type 0 in IPv6 vs. IPv4 source routing).

Project overview

During the last few years, CPNI – formerly NISCC – embarked itself in a
project to fill this gap.
The goal was to produce a set of documents that would serve as a security
roadmap for the TCP and IP protocols, with the goal of raising awareness
about the securty implications of the protocols, so that existing
implementations could be patched, and new implementations would mitigate
them in the first place.
This set of documents would be updated in response to the feedback
received from the comunity.
Finally, we planned to take the results of this project to the IETF, so that the
relevant specifications could be modified where needed.

Ouput of this project

Security Assesment of the Internet Protocol
In July 2008 CPNI published the document “Security Assessment of the Internet
Protocol” -- consisting of 63 pages, which include the results of our security
assessment of IPv4.
Shortly after, we published the same document as an IETF Internet-Draft (draft-gont-
opsec-ip-security-00.txt)
The Internet I-D was finally adopted (by the end of 2008) by the IETF.
Security Assessment of the Transmission Control Protocol (TCP)
In February 2009 CPNI published the document “Security Assessment of the
Transmission Control Protocol (TCP)” -- consisting of 130 pages, which include the
results of our security assessment of IPv4.
Shortly after, we published the same document as an IETF Internet-Draft (draft-gont-
tcp-security-00.txt)
There is currently a very heated debate about this document at the IETF between
those that support the idea that the TCP specifications should be maintained/updated,
and those who ague that they should be left “as is”.

Internet Protocol version 4

Security Implications of the
Identification field

IP IDentification field

The IP Identification (IP ID) field is used by the IP framentation mechanism.
The tuple {Source Address, Destination Address, Protocol, Identification}
identifies fragments that correspond to the same original datagram, and thus
the tuple cannot be simultaneously used for more than one packet at any
given time.
If a tuple {Source Address, Destination Address, Protocol, Identification} that
was already in use for an IP datagram were reused for some other datagram,
the fragments of these packets could be incorrectly reassembled at the
destination system.
These “IP ID collisions” have traditionally been avoided by using a counter for
the Identification field, that was incremented by one for each datagram sent.
Thus, a specific IP ID value would only be reused when all the other values
have already been used.

Security implications of the Identification field

If a global counter is used for generating the IP ID values, the IP Identification
field could be exploited by an attacker to:
Infer the packet transmission rate of a remote system
Count the number of systems behind a NAT
Perform a stealth port scanning

Randomizing the Identification field

In order to mitigate the security implications of the Identification field, the IP
ID should not be predictable, and should not be set as a result of a global
counter.
However, it has always been assumed that trivial randomization would be
inappropriate, as it would lead to IP ID collisions and hence to interoperability
problems.
Some systems (e.g., OpenBSD) have empoyed PRNG schemes to avoid
quick reuse of the IP ID values. However, they have been found to produce
predictable sequences.
An analysis of the use of fragmentation for connection-oriented (CO) and for
connection-less (CL) protocols can shed some light about which PRNG could
be appropriate.

Randomizing the IP ID: CO protocols

Connection-oriented protocols:
The performance implications of IP fragmentation have been known for about
20 years.
Most connection-oriented protocols implement mechanisms for avoiding
fragmentation (e.g., Path-MTU Discovery)
Additionally, given the current bandwidth availability, and considering that the
IP ID is 16-bit long, it is unacceptable to rely on IP fragmentation, as IP ID
values would be reused too quikly regardless of the specific IP ID generation
scheme.
We therefore recommend that connection-oriented protocols not rely on IP
fragmentation, and they randomize the value they use for the IP Identification
field of outgoing segments.

Randomizing the IP ID: CL protocols

Connection-less protocols
They typically lack of:
flow control mechanisms
packet sequencing mechanisms
reliability mechanisms
The scenarios and applications for which they are used assume that:
Applications will be used in environments in which packet-reordering is
unlikely.
The data transfer rates will be low enough that flow control is unnecessary
Packet loss is not important and probably also unlikely.
We therefore recommend connection-less protocols to simply randomize the
IP ID.
Applications concerned with this policy should consider using a connection-
oriented transport protocol.

Transmission Control
Protocol (TCP)

Overview of the TCP
connection-establishment
and connection-termination
mechanisms

Connection-establishment

The connection establishment phase usually involves the exchange of three
segments (hence it’s called “three-way handshake).

Once the three-way handshake has completed, the sequence numbers (and other parameters) will be properly synchronized, and the data transfer can proceed.

Connection termination

The connection termination phase usually involves the exchange of four
segments

The TCP that begins the connection-termination phase (Host A) usually stays in the TIME-WAIT state for 4 minutes, while the other end-point moves to the fictional CLOSED state (i.e., it does not keep any state for this connection

Collision of connection-id’s

Due to the TIME-WAIT state, it is possible that when a connection-request is sent to a
remote peer, there still exists a previous incarnation of that connection in the TIME-
WAIT state. In that scenario, the connection-request will fail.

It is clear that the collission of connection-id’s is undesirable, and thus should be avoided.

 RFC 793 RFC 1337

Security Implications of a
number of TCP header
fields

TCP Source Port &
Destination Port

TCP port numbers

Trust relationships
While some systems require superuser privilages to bind port numbers in the range
1-1023, no trust should be granted based on TCP port numbers.
Special port numbers
The Sockets API uses port 0 to indicate “any port”. Therefore, a port number of 0 is
never used in TCP segments.
Port 0 should not be allowed neither as a source port nor as a destination port.
Ephemeral port range
The IANA has traditionally reserved the range 49152-65535 for the Dynamic and/or
Private ports (i.e., the ephemeral ports)
However, different TCP implementations use different port ranges for the ephemeral
ports (e.g., 1024-4999, 32768-65535, 49152-65535, etc.)
We recommend TCP implementations to use the range 1024-65535 for the ephemeral
ports.

Ephemeral port selection algorithms

When selecting an ephemeral port, the resulting connection-id (client
address, client port, server address, server port) must not be currently in use.
If there is currently a local TCB with that connection-id, another ephemeral
port should be selected, such that the collision of connection-id’s is solved.
However, it is impossible for the local system to actually detect that there is
an existing communication instance in a remote system using that
connection-id (such as a TCP connection in the TIME-WAIT state).
In the event the selection of an ephemeral port resulted in connection-id that
was currently in use at the remote system, a “collision of connectio-id’s”
would occur.
As a result, the frequency of reuse of connection-id’s should be low enough
such that collisions of connection-id’s are minimized.

TCP Port Randomization

Obfuscation of the TCP ephemeral ports (and hence the connection-id) helps
to mitigate blind attacks against TCP connections
The goal is to reduce the chances of an off-path attacker from predicting the
pehemeral ports used for future connections.
Simple randomization has been found to lead to interoperability problems
(connection failures). (See Silbersack’s presentation at BSDCan 2006).
A good port randomization algorithm should:
Minimize the predictability of the ephemeral port numbers by an off-path
attacker.
Avoid quick re-use of the connection-id’s
Avoid the use of port numbers that are needed for specific applications (e.g.,
port 80).

A good port randomization algorithm

The IETF Internet-Draft “Port Randomization” [Larsen, M. and Gont, F.,
2008] describes an ephemeral port selection algorithm that’s based on an
expression introduced by Steven Bellovin for the selection of ISN’s:

Port = counter + F(local_IP, remote_IP, remote_port, secret_key)

It separates the port number space for connecting to different end-points
It has been found (empyrically) to have better interoperability properties
than other obfuscation schemes
It ships with the Linux kernel already.

Sample output of the algorithm

Sample output of the recommended algorithm.

Nr. IP:port offset min_ephlemeral max_ephemeral next_ephemeral port

#1 128.0.0.1:80 1000 1024 65535 1024 3048

#2 128.0.0.1:80 1000 1024 65535 1025 3049

#3 170.210.0.1:80 4500 1024 65535 1026 6550

#4 170.210.0.1:80 4500 1024 65535 1027 6551

#5 128.0.0.1:80 1000 1024 65535 1028 3052

TCP Sequence Number

Initial Sequence Numbers (I)

RFC 793 suggests that ISN’s must result in a monotonically increasing
sequence (e.g., from a global timer), so that the sequence number space of
different connections does not overlap. From that point on, it has been
assumed that the generation of ISN’s such that they are monotonically
increasing is key to avid that corruption in TCP (that could result from “old”
segments received for a new connection).
However, protection against old segments is really provided in TCP by two
other mechanisms that have nothing to do with the ISN’s:
“Quiet time concept”: After bootstrapping, a system must refrain from sending
TCP segments for 2*MSL.
TIME-WAIT state: When a TCP connection is terminated, the end-point that
performed the “active close” must keep the connection in the TIME-WAIT
state for 2*MSL, thus ensuring that all segments disapear from the network
before a new incarnation of the connection is created.

Initial sequence numbers (II)

In the traditional BSD implementation, the ISN generator was initilized to 1
during system boot-strap, and was incremented by 64000 every half second,
and by 64000 for each established connection.
Based on the assumption that ISN’s are monotonically increasing, BSD
implementations introduced some heuristics for allowing quick reuse of the
connection-ID’s. If a SYN is received for a connection that is in the TIME-
WAIT state, then,
If the ISN of the SYN is larger than the last sequence number seen for that direction of
the data transfer (SEG.SEQ > RCV.NXT), the TCB in the TIME-WAIT state is
removed, and another TCP is created in the SYN-RECEIVED state.
Otherwise, the processing rules in RFC 793 are followed.
It is very interesting to note that this hack was motivated by the use of the r*
commands. That is, for short-lived connections, that typically transfer small
amounts of data, and/or that typically use a low transfer rate.. Otherwise,
these heuristics fail.

ISN randomization

The implications of predictable ISN generators have been known for a long
time.
ISN obfuscation helps to mitigate blind-attacks against TCP connections.
The goal of ISN obfuscation is to prevent off-path attackers from guessing
the ISNs that will be used for future connections.
A number of TCP implementations (e.g., OpenBSD) simply randomize the
ISN, thus potentially causing the BSD hack to fail. In that scenario,
connection failures may be experienced.
We recommend generation of the ISNs as proposed by S. Bellovin in RFC
1948:
 ISN = M + F(localhost, localport, remotehost, remoteport, secret)
This scheme produces separates the sequence number space for each
connection-id, and generates ISNs that are monotonically-increasing within
their respective sequence number spaces.

TCP Window

TCP Window

The TCP Window imposes an upper limit on the maximum data transfer rate
a TCP connection can achieve
 Maximum Transfer Rate = Window / Round-Trip Time
Therefore, under ideal network conditions (e.g., no packet loss), the TCP
Window should be, at least:
 TCP Window >= 2 * Bandwidth * Delay
A number of systems and applications uset arbitrarily large TCP Windows, in
the hope of avoiding the TCP Window from limiting the data transfer rate.
However, larger windows increase the sequence number space that will be
considered valid for incoming connections, therefore increasing the chances
of an off-path attacker of successfully performing a blind-attack against a
TCP connection.
Advice: If an application doesn’t require high-throughput (e.g., H.245), use a
small window (e.g., 4 KBytes).

TCP Urgent mechanism
(URG flag and Urgent Pointer)

Urgent mechanism

The urgent mechanism provide a means for an application to indicate an
“interesting point” in the data stream (usually a point in the stream the
receiver should jump to). It is not meant to provide a mechanism for out-
of-band (OOB) data.
However, most stacks implement the urgent mechanism as out of band data,
putting the urgent data in a different queue than normal data.

Ambiguities in the semantics of the UP

There’s a mismatch between the IETF specifications and virtually all real
implementations.
“the urgent pointer points to the last byte of urgent data” (IETF) vs. “the
Urgent Pointer points to the byte following the last byte of urgent data”
(virtually all implementations)
Most implementations nevertheless include a (broken) system-wide toggle to
switch between these two possible semantics of the Urgent Pointer

 IETF specs Virtually all
implementations

Urgent data as OOB data

TCP/IP stacks differ in how they implement Urgent Data as OOB.
Virtually all stacks only accept a single byte of OOB data
Other stacks (Microsoft’s) accept OOB data of any length (*).

(*) It has been reported that they do not enforce limits on the amount of OOB queued!

Virtually all stacks Microsoft’s
stack

Urgent data in the current Internet

Some middle-boxes (e.g., Cisco Pix), by default, clear the URG flag and set
the Urgent Pointer to zero, thus causing the “urgent data” to become “normal
data”.
It is clear that urgent indications are not reliable in the current Internet.

Advice on the urgent mechanism

All the aforementioned issues lead to ambiguities in how urgent data may be
interpreted by the receiving TCP, thus requiring much more work on e.g.,
NIDS.
As discussed before, the urgent mechanism is unreliable in the current
Internet (i.e., some widely deployed middle-boxes break it by default).
Advice: Applications should not rely on the urgent mechanism.
If used,
It should be used just as a performance improvement
Applications should set the SO_OOBINLINE socket option, so that “urgent
data” are procesed inline.

TCP Options

MSS (Maximum Segment Size) option

Used to indicate to the remote TCP the maximum segment size this TCP is
willing to receive.
Some values are likely to cause undesirable behavior
A value of 0 might cause a connection to “freeze”, as it would not allow any
data to be included in the TCP payload.
Other small values may have a performance impact on the involved systems.
e.g., they will result in a higher overhead and higher interrupt rate
The security implications of the MSS were first discussed in 2001, but the
community never pruduced any mitigations.
Advice: Sanitize the MSS option as follows:

Sanitized_MSS = max(MSS, 536)
Eff.snd.MSS = min(Sanitized_MSS+20, MMS_S) - TCPhdrsize - IPoptionsize

Timestamps option

TCP timestamps are used to perform Round-Trip Time (RTT) measurement
and Protection Against Wrapped Sequence Numbers (PAWS)
For the purpose of PAWS, timestamps are required to be monotonically
increasing. However, there’s no requirement that the timestamps be
monotonically increasing accross TCP connections.
Generation of timestamps such that they are monotonically increasing allows
an improved handling of connection-requests (SYN segments) when there’s
a TCB in the TIME-WAIT state.
Many stacks select the TCP timestamps from a global timer, which is
initialized to zero upon system bootstrap.

Security implications of TCP timestamps

Predictable TCP timestamps have a number of security implications:
In order to perform a blind attack against a TCP connection that employs
TCP timestamps, an attacker must be able to guess or know the timestamp
values in use.
By forging a TCP segment with a timestamp that is larger than the last
timestamp received for the target connection, an attacker could cause the
conenction to freeze.
Therefore, system-wide TCP timestamps are discouraged.
Furthermore, if the timestamps clock is initilized to a fixed value at system
bootstrap, the timestamps will leak the system uptime.

Advice on TCP timestamps

Advice: Generate timestamps with a RFC1948-like scheme:

timestamp = T() + F(localhost, localport, remotehost, remoteport, secret_key)

This expression provides a per-destination-endpoint monotonically-increasing
sequence, thus aenabling the improved handling of SYN segments while
avoiding an off-path attacker from guessing the timestamp values used for
new connections.
This timestamps generation scheme has been incorporated in Linux
It will most likely be adopted by the IETF in the revision of the TCP
timestamps option RFC.

Connection-flooding
attacks

Some variants of connection-flooding attacks

SYN-flood: aims at exhausting the number of pending connections for a
specific TCP port
Naphta: aims at exhausting the number of ongoing connections
FIN-WAIT-2 flood: aims at exhausting the number of ongoing connections,
with connections that are not controlled by a user-space process.
Netkill: aims at exhausting system memory used for the TCP retransmission
by issuing a large number of connection requests followed by application
requests, and abandoning those connections.

Naphta

The creation and maintenance of a TCP connection requires system memory
to maintain shared state between the local and the remote TCPs.
Given that system memory is a limited resource, this can be exploited to
perform a DoS attack (this attack vector has been referred to as “Naphta”).
In order to avoid wasting his own resources, an attacker can bypass the
kernel implementation of TCP, and simply craft the required packets to
establish a TCP connection with the remote endpoint, without tying his own
resources.
Counter-measures
Enforcing per-user and per-process limits
Limiting the number of simultaneous connections at the application
Limiting the number of simultaneous connections at firewalls.
Enforcing limits on the number of connections with no user-space controlling
process.

A typical connection-termination scenario:

Problems that may potentially arise due to the FIN-WAIT-2 state
There’s no limit on the amount of time a connection can stay in the FIN-
WAIT-2 state
At the point a TCP gets into the FIN-WAIT-2 state there’s no user-space
controlling process

FIN-WAIT-2 flooding attack

Countermeasures for FIN-WAIT-2 flooding

Enforce a limit on the duration of the TIME-WAIT state. E.g., Linux 2.4
enforces a limit of 60 seconds. Once that limit is reached, the connection is
aborted.
The counter-measures for the Naptha attack still apply. However, the fact that
this attack aims at leaving lots of connections in the FIN-WAIT-2 state will
usually prevent an application from enforcing limits on the number of ongoing
connections.
Applications should be modified so that they retain control of the connection
for most states. This can be achieved by replacing the employing a
conbination of the shutdown(), setsockopt(), and close().
TCP should also enforce limits on the number of ongoing connections with no
user-space controlling process.

Security implications of the
TCP send and receive
buffers

TCP retransmission (send) buffer

The Netkill attack aims at exhausting the system memory used for the TCP
retransmission buffer.
The attacker establishes a a large number of TCP connections with the target
system, isues an application request, and abandons the aforementioned
connections.
The target system will not only waste the system memory used to store the
TCB, but also the memory used to queue the data to be sent (in response to
the application request).

Counter-measures for the Netkill attack

The countermeasures for the Naphta attack still apply.
In addition, as the malicious connections may end up in the FIN-WAIT-1
state, applications should be modified so that they retain control of the
connection for most states. This can be achieved by replacing the employing
a conbination of the shutdown(), setsockopt(), and close().
When resource exhaustion is imminent, a connection-prunning policy might
have to be applied, paying attention to
Connections that have advertised a 0-window for a long time
Connections for which the first few windows of data have been retransmitted
a large number of times
Connections that fall in one of the previous categories, and for which only a
small amount of data have been successfully transferred since their
establishment.

TCP reassembly (receive) buffer

When out-of-order data are received, a “hole” momentarily exists in the data
stream which must be filled before the received data can be delivered to the
application making use of TCP’s services.

This mechanism can be exploited in at least two ways:
An attacker could establish a large number of TCP connections and
intentionally send a large amount of data on each of those connections to the
receiving TCP, leaving a hole in the data stream so that those data cannot be
delivered to the application.
Same as above, but the attacker would send e.g., chunks of one byte of data,
separated by holes of e.g., one byte, targeting the overhead needed to hold
and link each of these chunks of data.

Improvements for handling out-of-order data

TCP implementations should enforce limits on the amount of out-of-order
data that is queued at any time.
TCP implementations should enforce limits on the maximum number of
“holes” that are allowed for each connection.
If necessary, out-of-order data could be discarded, with no effect on
interoperability. This has a performance penalty, though.

Remote Operating System
detection via TCP/IP stack
fingerprinting

Overview

A number of tools, such as nmap, can perform detect the operating system in
use at a remote system, via TCP/IP stack fingerprinting
This is achived by analyzing the response of the TCP/IP stack to a number of
probes that different stack process in different ways
The precision of their results is amazingly good. – It shouldn’t be that good!
Question: Wouldn’t it be possible for these TCP/IP stacks to respond to most
of these probes in exactly the same way?

FIN probe

The IETF specifications leave it unspecified how TCP should respond when a
packet that does not have the SYN or ACK bits set is received for a
connection that is in the LISTEN state.
Some stacks respond with an RST, while others silently drop the segment.
Advice: reject with an RST those TCP segments that do not have the SYN or
ACK bits set and that are received for a connection in the LISTEN state. In all
other cases, follow the rules in RFC 793.

Bogus flag test

The attacker sends a TCP segment with at least one of the Reserved bits set.
Some stacks ignore this field, while others reset the connection, or reflect the
field in the TCP segment sent in response.
Advice: Ignore any flags not supported, and not reflect them if a TCP
segment is sent in response to the one just received.

RST sampling

Different implementations differ in the Acknowledgement Number they use in
response to segments received for connections in the CLOSED state.
If the ACK bit in the incoment segment is off, the response should be:

<SEQ=0><ACK=SEG.SEQ+SEG.LEN+flags><CTL=RST, ACK>

If the ACK bit in the incoming segment is on, the response should be:

<SEQ=SEG.ACK><ACK=SEG.SEQ+SEG.LEN+flags><CTL=RST, ACK>

That is, the Acknowledgment number should be set to the SEQ of the
incoming segment, plus the segment length, and BE incremented by one for
each flag that set in the orginal segment that occupies on byte in the
sequence number space.

Port-0 probe

The Sockets API uses port 0 to indicate “any port”. Therefore, a port number
of 0 is never used in TCP segments.
Different implementations differ in how they process TCP segments that use
0 as the Source and/or Destination port (e.g., some will allow their use, some
will reject incoming connection requests, and some will silently drop the
incoming connection requests). This has been exploited for remote OS
detection via TCP/IP stack fingerprinting.
Advice: reject with an RST TCP segments that use port number 0 (that do not
have the RST bit set).

TCP option ordering

Different TCP implementations enable different options (by default) in their
TCP connections.
Additionally, they frame the options differently.
There may be reasons for a TCP to include or not include some specific
options. On the other hand, how to frame the options is, for the most part,
simply a matter of choice.
More work is needed to get consensus on which options should be included
by default, and how to frame them.
An additional benefit resulting from arriving to such consensus is that stacks
could implement “TCP option prediction” (i.e., tune the code so that
processing of packets with the usual options in the usual order is faster).

Additional fingerprinting techniques

Other parameters can be sampled with the intent to correlate them with
specific implementations of TCP:
ISN: While we recommend implementation of the scheme described in
RFC1948, some stacks could sifferent in the granularity of the timer that they
use.
Initial window: Different stacks use different values for the TCP Window
advertised in SYN segments. More work is needed to possibly arrive to
consensus on the default value to be used.
 Retransmission TimeOut (RTO): Different stacks use different values for
this parameter. However, of all the fingerprinting techniques, this is the one
that is less of a concern, as its precision is highly-dependent on the network
conditions.

Conclusions & Further
Work

Conclusions and Further Work

Working on TCP/IPv4 security in 2005/2008 probably didn’t have much
glamour. However, this was something that needed to be done.
Unfortunately, many people will not read past the preface of the documents,
but will nevertheless claim that “there’s nothing new in this documents”.
There seems to be resistance in the IETF to update/fix the specs. – Get
involved!
We’re aware of some efforts in the vendor community to improve the security/
resiliency of TCP. Not sure what the end result will be.
Your feedback really matters.

Questions?

Acknowledgements

UK CPNI, for their continued support

Fernando Gont
fernando@gont.com.ar
http://www.gont.com.ar

mailto:fernando@gont.com.ar
http://www.gont.com.ar/

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64

