
PC-BSD - Making FreeBSD on the
Desktop a reality

Kris Moore
kris@pcbsd.org

PC-BSD Software – iXSystems

Abstract

FreeBSD has a reputation for its
rock-solid reliability, and top-notch
performance in the server world, but is
noticeably absent when it comes to the
vast market of desktop computing. Why is
this? FreeBSD offers many, if not almost
all of the same open-source packages and
software that can be found in the more
popular Linux desktop distributions, yet
even with the speed and reliability
FreeBSD offers, a relative few number of
users are deploying it on their
desktops.

In this presentation we will take
a look at some of the reasons why
FreeBSD has not been as widely adopted
in the desktop market as it has on the
server side. Several of the desktop
weaknesses of FreeBSD will be shown,
along with how we are trying to fix
these short-comings through a desktop-
centric version of FreeBSD, known as PC-
BSD. We will also take a look at the
package management system employed by
all open-source operating systems alike,
and some of the pitfalls it brings,
which may hinder widespread desktop
adoption.

1 Introduction

FreeBSD is well known for its
performance and reliability. Many
organizations recognize this and deploy
it widespread across server rooms world-
wide. However when it comes to the
personal computer, or business
workstation, FreeBSD is much more rarely
found. Why is this? On the desktop side,
FreeBSD offers many advantages to a
user, such as the speed of the ULE
scheduler, 3D acceleration with a

variety of video cards, sound support,
resistance to viruses, and a wide
variety of software available through
the ports system. With all these
positives that a FreeBSD desktop can
offer, we must first identify and figure
out how to solve some of its
shortcomings in order to make widespread
FreeBSD on the desktop a reality.

2 Desktop Weaknesses

FreeBSD by itself lacks some
features and abilities which make
widespread desktop adoption possible.
The first problem a potential desktop
user will run into is the lack of an
easy to use graphical installer. The
FreeBSD sysinstall program, while a good
installer for a server-based system, can
be quite a learning challenge for a
desktop user, who simply needs to get a
system set up and running with a minimal
amount of effort or discomfort.

After a potential desktop user has
finished a basic install of FreeBSD,
they will then run into a new series of
challenges required to set up a
functioning desktop. A user will now
find it necessary to install and
configure Xorg, and an associated
desktop environment. This will require
knowledge of the FreeBSD ports system,
or pkg_add command, plus the work of
some text editor such as vi, pico, or
emacs to configure various settings and
files, such as /etc/X11/xorg.conf, /etc/
ttys, and others. Along with these
challenges, the user may also need to
configure support for their sound-card,
network, or wireless devices. For a new
user, who simply wants a desktop to surf
the net, check e-mail, and run
productivity applications, this can be a
real challenge, and one which a user
will likely not see through to
completion.

If a user has made it this far,
and achieved a working desktop system,
then there is one last hurdle to
overcome; how to maintain it? Desktop
programs often have updates for security
issues, or new versions are released

mailto:kris@pcbsd.org

with features that the user wants to
utilize. Now the user has to consider
the task of how to apply these updates.
They may need to re-compile an
application from the ports tree, or if
they had help setting up the system,
call their support personnel to perform
what should have been a simple program
update.

These issues alone are enough to
scare off the vast majority of desktop
users from running FreeBSD, and enjoying
the other positives that it may offer.
If these problems were solved, we could
easily expect to see FreeBSD become a
serious contender in the desktop arena,
as it already is in the server market.
The desktop success of Mac OS X is a
good example of this principle. If the
system can be made easy to load, easy to
manage and easy to maintain, then more
and more users be willing to make the
switch, often without even knowing or
caring which kernel is under the hood,
or what various ports such as the xorg-
server is or does.

3 Addressing the
weaknesses through PC-BSD

While the hurdles to mainstream
adoption of FreeBSD on the desktop are
large, we are attempting to solve them
through PC-BSD. PC-BSD is a desktop-
centric version of FreeBSD, which is not
a fork, rather a bundling of various
GUI's, packages and tools, designed to
solve these problems, and make FreeBSD
on the desktop easy enough for
widespread adoption. The latest version
as of this writing is based on FreeBSD
7.1-STABLE, and provides a fully-
functional KDE 4.2 desktop “out of box”.
First, lets take a look at the
installer, which is the first and most
important step to getting a desktop
deployed.

3.1 Graphical System
Installer

In order to solve the installation
dilemma, PC-BSD includes its own, custom
graphical installation solution. This
GUI is written in C++, using QT 4 from
Nokia1. In addition to the new GUI
installer, the installation can now be
performed from DVD, CD, USB, or network.
Let us take a closer look at some of the
internals of PC-BSD's installation
system.

The PC-BSD install media was
originally based on the Freesbie2 live
CD creation scripts, which have since
been changed to support other
installation mediums, such as USB. The
boot process is standard FreeBSD, and
then uses a small mfsroot file system
specified in /boot/loader.conf

The mfsroot image contains a small
FreeBSD world environment and a
customized /etc/rc script which runs
after the kernel load. The /etc/rc
script first runs a loop, to locate the
installation media, and mount it to
/mnt:

mfsroot_load="YES"
mfsroot_type="mfs_root"
mfsroot_name="/boot/mfsroot"

CDDEVS="/dev/acd0 /dev/acd1
/dev/acd2 /dev/cd0 /dev/cd1
/dev/cd2"

for i in $CDDEVS
do
 # Find the CD Device
 /sbin/mount_cd9660 $i /mnt

 if [-e "/mnt/uzip/usr.uzip"]
 then
 FOUND=1
 CDDEV="$i"
 break
 else
 /sbin/umount /mnt
 fi
done

After locating the install media,
the rc script then creates a ramdisk and
mounts it to /uzip, in order to copy the
usr.uzip file from the media into
memory. The usr.uzip file contains the
graphical installer, Xorg files, and
other data required to bring up the
graphical interface. By copying this
file into memory, the script is then
able to unmount the CD/DVD media and run
entirely from RAM. This ramdisk usage
allows the user to switch discs as the
need arises. After the /etc/rc script
completes, the system boots normally and
the user is presented with a GUI, that
guides the user through the
installation.

Once the user has selected their
install options, such as locale, user
names, and disk options, then the GUI
begins the installation process. This
process is relatively simple, with the
entire PC-BSD operating system stored as
a LZMA compressed tar archive. After
mounting the formatted partition to
/mnt, this archive is extracted to disk,
user accounts are created, and then the
system and KDE locales are configured.
After this process is finished, the
CD/DVD is ejected, and the user is
prompted to reboot the system. At this
point the installation is finished, and
a fully-functional graphical desktop is

ready to be booted for the first time.
This entire process normally takes less
than 20 minutes, and can be completed by
users with minimal computing knowledge.

3.2 Configuration Tools

Once the user has finished the
initial install of the system, there are
often more things which need to be
configured before an optimal desktop can
be achieved. PC-BSD includes support for
detecting most common sound-card
hardware automatically, however for the
video setup and networking, the user
often will want to specify their own
options. We will take a look at two of
these tools, for display configuration
and network setup.

Upon the first boot of a freshly
installed PC-BSD system, the user will
be brought up to a graphical tool, which
allows the configuration of the display
settings.

This Xorg setup GUI, is possibly
the most critical setup tool for a new
desktop user making the switchover to
BSD. Installing a system, and having it
boot to a console window is one of the
fastest ways to send a new user back to
the comfort of Windows or Macintosh.

Figure 1: The PC-BSD Installer Wizard

Figure 2: The X Setup Tool

With this in mind, the “Display
Settings” tool was created, to allow the
user to easily configure their screen
resolution, drivers, and color depth,
with minimal difficulty. Under the
“Advanced” tab, the user can also
provide refresh rate information, or
enable dual-head support with the click
of a mouse. The tool also requires that
a user “test” their chosen configuration
before loading the desktop. This helps
to ensure that the selected options do
display properly, and the user is
pleased with them, before loading the
desktop. Should the user switch
monitors, or video cards, the “Display
Settings” tool is easy to recall during
the system boot. By selecting option 7
“Run the Display Setup Wizard” from the
loader splash screen, the Xorg
configuration tool will be run again,
allowing new tweaking of any display
settings.

In addition to tools such as an
Xorg setup GUI being necessary, other
utilities for setting up services such
as networking are vitally important to
the desktop user. When running standard
FreeBSD, networking is normally set up
by editing /etc/rc.conf by hand, or if
using a wireless device, by editing
the /etc/wpa_supplicant.conf file. While
this does allow greater flexibility in
configuration, it is often beyond the
capability of a traditional desktop
user, who is used to clicking on a few
buttons in order to establish a working
network connection.

To solve this dilemma, PC-BSD
includes an extensive network
configuration toolset, for both wired
and wireless devices. These tools act as
a easy-to-use front-end to the
/etc/rc.conf and wpa_supplicant.conf
files. The network manager behaves
simply as a desktop user would expect,
with a listing of all the network
devices on the system, and configuration
options for each.

For users on laptops or who are
connecting via wireless, an extensive

Figure 3: The Network Device Manager

Figure 4: The Wireless Profile Manager

front-end to wpa_supplicant.conf is also
provided. This utility provides support
for multiple wireless profiles
simultaneously, which allows the user to
roam with their laptop, and connect to
the best available network. Security
options are also supported, such as WEP,
WPA-P, and WPA-E. For monitoring of the
wireless connection strength, a small
tray application also is available.

3.3 Base System
Modifications

Even though PC-BSD is one hundred
percent FreeBSD under the hood, it does
include some modifications to the
installed system in order to be more
“desktop-ready”. Starting in PC-BSD 7.1,
the included KDE4 desktop and related
packages have been moved from the
/usr/local directory, and into the
/PCBSD/local directory by modifying the
LOCALBASE variable at build time. This
change allows the user to install both
PBIs and FreeBSD ports, all without
touching or possibly breaking their
installed desktop. Also, this
modification enables online updates to
be applied selectively to the
/PCBSD/local base, without corrupting a
user's installed ports in /usr/local.

This change to using /PCBSD/local
for installed ports is done by setting a
few options during the build of PC-BSD.

Options for /etc/make.conf

Environment Variables

These options are set before
compiling the PC-BSD base set of
packages, such as Xorg, KDE4, HAL, and
others. After the build is complete,
/usr/local is left empty, and running
the pkg_info command shows no ports
installed on the user's system. This
change provides additional freedom for
advanced users to work with the FreeBSD
ports tree, without fear of conflicts
with the installed PC-BSD base packages.

4 PBI – A desktop-friendly
packaging system

A desktop which is easy to install
and manage is a good start, but without
the ability for a user to easily install
applications it becomes meaningless. To
solve this problem, PC-BSD introduced a
new package management system known as
PBI (Push Button Installer), which is
quite different than traditional methods
of software disbursement on other open-
source operating systems. First, we will
take a look at the concept differences
between the PBI and traditional
packaging system.

4.1 Design Differences

At its core, a PBI software
package is built upon some very
different premises than a traditional
port, RPM, or deb file. When installing
software on a Linux system, or FreeBSD
using the ports tree, each program is
dependent upon several things in order
to function. First, each application is
dependent upon the the base operating
system itself to function, such as the
kernel, some basic libraries such as
libc, and a few others. These are fairly
consistent on a system, and usually only
change between major system updates,
such as moving from FreeBSD 6.x to 7.x.

The next step up from the base
operating system is the “application
layer”, which consists of software

X11BASE=/PCBSD/local
LOCALBASE=/PCBSD/local

PKG_DBDIR="/PCBSD/var/db"
export PKG_DBDIR
PORT_DBDIR="/PCBSD/var/db"
export PORT_DBDIR

packages, shared libraries, and data. On
traditional FreeBSD or Linux, packages
are installed in this layer, with a
system of inter-dependencies upon other
packages. For an example, lets take a
look at a visual diagram.

In this simplified example, we see
the base operating system along with a
series of installed packages. At the
first layer, Pkg A through Pkg D all
depend solely upon the base system to
function. However, as you move up the
tree to Pkg E through Pkg J, you'll
notice that they depend upon the
presence of one, or several other
packages to function. Should any package
at a lower level be removed, other
software which depends upon it will
cease to function. By the same token,
should the user wish to update a package
at the top of the tree, it may require
an updated version of a package lower
down, which in turn may require the
updating of other packages which depend
upon it.

While this method of package

management does have some advantages
such as saving disk space, it can also
have many drawbacks for the average
desktop user. A user will often not
realize that the desktop itself, such as
KDE or Gnome, is apart of this “package
tree”. After his system is installed and
the user decides to update to the latest
version of a particular application, he
could begin to run into problems. The
new application may in turn require
updated versions of libraries further
down the tree. These updated libraries
may or may not be apart of his desktop
interface, and have the potential of
causing breakage, or requiring an update
of some (seemingly) unrelated package to
function. In the strict sense, a user's
desktop interface is simply another
piece of software on the system, and may
be subject to updates or can be broken
simply through the process of installing
or updating any third party application.

Most modern open-source desktops
try to compensate for this design by
implementing powerful software managers
which keep track of all packages and the
inner-connecting dependencies they
require. Thus, when a user requests to
install or update a software package,
the manager will map out all the
required dependencies, and try to warn
the user of any potential conflicts.
While these managers are improving in
their ability to monitor changes, fix
conflicts, and prevent breaks, they
still do not change the underlying
design of the system. There still may be
ten, twenty or even one hundred
potential points of failure in the
process of trying to install an
application, depending upon the size and
scope of the application's dependency
tree.

With the introduction of the PBI
format, the PC-BSD system has
implemented a new method of package
management, which attempts to reduce the
potential for failure. The PBI format
does this through the packaging of
applications, complete with their
required data and libraries together
into a self-contained directory. This
structure keeps applications separate

Figure 5: Traditional Package Management
Model

from the desktop and base system itself.
By using this method, there are a few
advantages and disadvantages.

The main disadvantage is that
applications will require a bit more
disk space, since they each include the
required libraries within the package.
However, this is quickly becoming less
of an issue, since storage capability is
expanding at an exponential rate. The
same disadvantage may apply to
downloading of applications, since a
program like FireFox may be a few
megabytes larger in PBI form, vs a
traditional package with no included
libraries. However, this also is
becoming a lesser issue as time goes on,
with the advent of high-speed
connections becoming faster and more
common place.

Even with the disadvantages, as
increasingly irrelevant as they are
becoming, the advantages to the desktop
user are easily apparent. First, by
including the dependencies within each
package, the applications themselves no
longer have multiple points of failure
with which to complicate an install. A
user need not worry about which packages
are installed on their system, such as
the versions of KDE, QT, or GTK. By the
same token, now the user can freely
remove or update an installed PBI,
without the potential of a failure in
their desktop, or some other seemingly
unrelated application. This provides a
level of reliability that desktop users
want and need in their systems. The
average desktop user or business does
not want to waste time, manpower, or
money resolving potential software
conflicts.

4.2 PBI in practice

Now that we've taken a look at the
design differences between a traditional
package and a PBI, let us now explore
how a PBI is built in order to achieve
containment. Starting with the
introduction of PBI Schema v2 in
December of 2008, building a PBI from
ports is easier, and more reliable than
ever. By using the PBI Builder
Software3, a target port is compiled
within a chroot environment, with a
custom LOCALBASE option that will
determine the location of the installed
PBI on the client system.

 /etc/make.conf in chroot build

By setting our port make options
to this target directory, all binaries
and libraries are compiled to link back
to this directory for their execution.
After the port make and install are
finished, the PBI Builder then reads
through a developer-provided
configuration module4 to determine which
files need to be copied and placed into
the compressed PBI archive. There
usually are a very small number of files

LOCALBASE=/Programs/FireFox3.0.5

Figure 6: The PBI Application Model

necessary for program execution, since a
majority of the installed data is only
required for the compiling phase of the
port make.

After the program data is
accounted for, the PBI Builder then
proceeds to include some module-provided
configuration data. This data may
include desktop or start menu icon
configurations, mime-type association of
files, custom installation graphics, and
setup / removal scripts. Once this
configuration data has been copied, the
entire archive is compressed using tar
and lzma. This archive is then appended
to a small binary loader and second tar
archive which contains the name,
version, and other details about the
final application. Once this is
complete, the PBI is now ready to be
installed.

When the user clicks, or “runs”
the PBI, the loader binary extracts the
program details, prompts to switch to
root for the install, parses any
command-line flags, and then brings up
the appropriate installation wizard. A
PBI file includes both a command-line
mode along with the graphical
installation wizard. After the user
confirms a few choices, the installer
then decompresses the included package
archive, usually to /Programs/<PBI Name
+ PBI Version>. If the user selected a
different installation location, the
installer will extract it to the
appropriate location, and then create a
symlink back to /Programs, ensuring that
the application's internal linking is
still valid.

After this installation is
finished, the program is now ready to be
run. The user may simply click the
created program icon, or run it via the
command-line if the installed
application includes a command-line
functionality. Should the user wish to
remove this PBI, it may be easily
accomplished through the Software
Manager, or via the command-line by
using “pbidelete”. The removal tool then
deletes the program data, cleans up any
created icons, and runs any developer
provided uninstall scripts. Often these
scripts exist simply to ask if the user
wishes to remove personal data created
by the application.

5 Summary

We have taken an in-depth look at
some of the challenges to making FreeBSD
on the desktop a reality, including the
steps PC-BSD has taken to accomplish
this goal. While these enhancements to
FreeBSD by themselves may only seem to
be small improvements, together they
form the basis of a easy-to-use desktop
operating system, which has the
potential to greatly increase the number
of systems on which FreeBSD is deployed.
By introducing the PBI package
management system in PC-BSD, our goal is
to be accessible to those who may have
never touched an open-source system
before, as well as provide convenience
to technical users who appreciate the
simplicity and reliability that it
offers.

Figure 7: The PBI file layout

Figure 8: The PBI Graphical Install Wizard

1 http://www.qtsoftware.com/
2 http://www.freesbie.org/ or in ports: sysutils/freesbie/
3 http://www.pcbsd.org/content/view/45/30/
4 http://trac.pcbsd.org/browser/pbibuild/modules/

http://trac.pcbsd.org/browser/pbibuild/modules/
http://www.pcbsd.org/content/view/45/30/
http://www.freesbie.org/
http://www.qtsoftware.com/

