

Kernel Development in Userspace
The Rump Approach

Antti Kantee
pooka@cs.hut.fi

Helsinki University of Technology

BSDCan 2009,
Ottawa, Canada

May 2009

mailto:pooka@cs.hut.fi

Introduction / Motivation

● computers are difficult
– otherwise this would be a boring conference

● kernel hacking is even more difficult
– very unforgiving
– lots can go wrong
– everything can touch anything

● motivation: make this easier
– at least on NetBSD ;-)

Talk outline

● survey of kernel development techniques
● introduce Runnable Userspace Meta

Programs (rump)
● explain why, how, when and when not
● go into some details, provide tips
● introduce some useful tools
● goal: give ideas for alternative and easier

approach on kernel development

Traditional development vectors:
directly on hardware

● the hardcore approach
● typically two machines are used: one for

development, one for testing
● environment setup may take a while

– installing and maintaining two systems
● typically serial console/firewire + gdb
● sometimes the only feasible option

– some stages of device driver development

Traditional development vectors:
emulator or virtual machine

● two popular examples: qemu and Xen
● fundamentally same as direct approach
● no Xen dom0 already available?
● no KVM support => qemu is slow'ish
● benefit over hardware approach: no

cables necessary

Traditional development vectors:
ad-hoc userspace techniques

● massage component under development
to run as part of a userspace program

● compile and run in userspace
● simplify/ignore some kernel interfaces
● apply #ifdef liberally
● file systems are well-known employers of

this strategy, e.g. FFS and ZFS

Runnable Userspace Meta Programs
● observation: most kernel code does not

need to run in the kernel (cf. microkernels)
● make kernel code runnable in userspace
● kernel source module x still depends on

interfaces provided by modules y, z and å
● some code depends on hardware access
● solution: split code into components to

handle dependencies, reimplement code
unnecessary for userspace (e.g. pmap)

The (big) picture

NetBSD KernelTCP/IP
driver

NIC
driver

UFS
driver

disk
driver

system call layer

network
process

sendmsg()

rump
network
process

rump
write()

storage
process

rump
storage
process

rump
unlink()read()/write()

sendmsg() unlink()

hard
drive

network

A different view

application

rump

kernel

application rumpserver

kernel

 syscall

service
loopback

kernel

user

In Front Behind

proc 1 proc 1 proc 2

 function
call

Available components

● kernel core (rumpkern, -lrump)
● most file systems (rumpvfs, -lrumpvfs)

– FFS (-lrumpfs_ffs), NFS (-lrumpfs_nfs),
tmpfs (-lrumpfs_tmpfs) etc.

● networking (rumpnet, -lrumpnet)
– networking subroutines (-lrumpnet_net)
– TCP/IP (-lrumpnet_inet)

● system calls for each component

When to use

● debugging a supported component
● developing new code
● testing
● playing around

● application uses
– beyond the scope of this presentation

When to not use

● rump complements existing methods
– not a general solution

● desired component not available
– you might attempt to add support, though

● desired component depends on
interaction with unsupported component
– e.g. virtual memory and page remapping

● desired component uses hardware directly

gdb and rump

● gdb can be used on a rump like on any
userspace program

● backtrace, break, single-step, examine
data, examine core dump, ...

● gdb on threaded programs currently
suboptimal on NetBSD
– env variable RUMP_THREADS set to 0

disallows threads creation in rump

Examples of other tools

● gprof
● valgrind
● eletricfence, dmalloc

– depends on which implementation of the
memory allocator you use

File system tools

rump_$fs
● userspace mount

– uses puffs
● any application
fs-utils (by Arnaud Ysmal)
● use rump syscalls to implement POSIX file

system utils (ls, cp, etc.)
● does not require mounting

application

kernel
puffs vfs

kernel fs
libpuffs

rump

Demystifying rumpns

● kernel and application linker namespaces
are normally disjoint
– e.g. malloc() can exist in both without conflicts

● rump stuffs both under the same roof
– possibility of conflicts

● => kernel symbols prefixed with ”rumpns”
● linker complains: no rumpns_garven_deh

– missing garven_deh, not rumpns_garven_deh

Interfacing with the ”kernel”

● kernel function prototypes not available
directly in userspace
– they would be wrong anyway due to rumpns

● rump interfaces (e.g. rump_init())
● syscalls (e.g. rump_sys_open())
● vfs/vnode (e.g. RUMP_VOP_SETATTR())
● user-defined, must provide ”rumpns”

prototype for the compiler

ABI mix&match

● possible to run rump on
non-matching NetBSD
system version

● also possible on non-
matching OS

● problem is interfacing
– types with different size

rump kernel,
NetBSD x+1,
64bit time_t

”userland”,
OS ... y,

32bit time_t

foo(time_t *)

Link sets

● entries placed in a certain section of the
object file are unified by the static linker

● the kernel can traverse the entries runtime
● problem: scheme not fully compatible

with dynamic shared objects
● effect: link set entries only from first DSO

on linker line are visible
● solution(?): traverse link sets manually

Networking stack testing

● generate complex routed networks within
a single machine
– scales to thousands of nodes
– script to generate&configure routing tables,

interface addresses, etc.
● convert test applications to use rump

– e.g. Apache took an hour or so
– no preexisting tools yet

Tests and regression tests

● kernel tests usually run against live kernel
● test crash can crash the system

– bad for batch testing
– even worse for fault injection

● no need to: 1) compile kernel 2) update
target environment 3) boot kernel 4) boot
userland 5) run test program
– very rapid incremental development

Repeating problems in rump

● most kernel problems easily repeatable
– based on experience

● really sensitive timing problems might be
problematic
– or they might not be

● kernel bug or rump bug?

Example: real life fs problem

● mkdir returned ENOSPC with >4TB free
● solution:

– mount with rump_ffs
– put a breakpoint into ufs_mkdir
– single-step and locate problem, fix

● rump enabled debugging the problem on a
production system by a non-fs developer

Conclusions

● rump helps kernel development in its
target cases
– complements traditional methods

● short test cycle
● userspace tools
● makes the kernel more approachable

– allows users to submit better bug reports

More info

● http://www.NetBSD.org/docs/rump/
● src/sys/rump in NetBSD source tree
● NetBSD mailing lists
● BSDCan 2009 paper

– and other papers

● questions?

http://www.NetBSD.org/docs/rump/

