How not to write
network applications

(and how not to use them correctly..)

Adrian Chadd <adrian@FreeBSD.org>

mailto:adrian@FreeBSD.org
mailto:adrian@FreeBSD.org

Overview

A simple overview - including HT TP basics

A few “bad” examples, notably from Squid/
Apache - and what they’ve subsequently

done
An “o
“gooc

What

<’ example - notably lighttpd

"’ examples - memcached, varnish

is libevent ?

Overview (ctd)

® | atency, bandwidth delay product, and
scheduling network IO

® Why does disk |O matter?

® Summary

Introduction

Writing network applications is easy

Writing efficient network applications is less
easy

Writing efficient, scalable network
applications is even less easy

Predicting your real-life workloads and
handling that is difficult

Lessons learnt, # |

® High-performance network applications
needs clue

® Coding clue

® Algorithm choices, structure
® Hardware clue

® How fast can you push what

® Gathering/Interpreting profiling

Lessons learnt, # |

® Operating system clue

® Best way to schedule stuff

® Worst ways to schedule stuff
® Profiling!
® Networking clue
® “speed of light”
e TCP/UDP behaviour

Lessons learnt, # |

® Protocol clue

® How does the protocol work
® (Client <-> Server communication
® Client behaviour, Server behaviour

How this ties into the network

An example: HTTP

® HTTP is ..strange

® A large variance in usage patterns, client/

servers, traffic patterns, software versions,
network behaviour..

® Small objects

o < 64k

® will never see TCP window size hit

maximum during initial connection
lifetime

An example: HTTP

® |arge objects

® Well, >64k really

® Will start to hit congestion and back-off
limits

® Throughput variations are perceived by
end-user

® versus small objects - request/reply
rate dictates perceived speed

An example: HT TP

— E— — —

® But there’s more!

® HTTP keepalives affect TCP congestion

® HTTP pipelining influences perceived

request speed on small objects

® Clients and servers have differently
tuned TCP stacks...

® ..“download accelerators”, anyone!

Apache: History!

The pre-fork web server

internals should’?ve been clean because of

this

Handa

Handa

€d

€d

nig

nig

n-reqrate poorly

N humbers of concurrent

connections poorly

Flexible enough to run a variety of
processing modules - php, python, perl, java..

Apache: History!

® Why did it perform so poorly under load!?

® Memory use - each connection == |
process; SSL/PHP/Python/etc overheads

.. even if the request didn’t require any
of that

scheduling 30,000 concurrent processes
== hard (Jeff: is it that bad nowdays?)

® small amount of paging == death

Apache 2: Revolution

® Decided to abstract out the dispatching
runtime - thread pool, pre-fork

® To handle varying platform support, incl.
Windows, Netware

® Abstracted out the socket polling where
relevant - select, poll, kqueue, epoll, etc

® User can select which dispatcher (MPM)
they wish to use at compile/install time

Apache 2: MPM

® Quite a few MPM modules for scheduling
work

Traditional prefork
Process + thread worker module
Thread-only worker modules (Netware)

Something windows-specific

Apache 2: Performance

® Pre-fork: same as apache |
® Worker thread models:

® network |O only? It should be fast
enough for you

® Disk IO too! Things get scary: the
worker thread pool begins to grow!

® thread seems to scale (as a proxy) to
>10000 concurrent connections

Apache 2: Modern Use

Split up different services - static, dynamic,
application

Configure a front apache (running thread
MPM) as a proxy;“route” content to
applicable backend

Static content?! Don’t waste memory on
PHP.

PHP/etc content! Don’t stall static content
serving

Squid: History

Squid: its been around a while

Its not as bad as people make it out to be
Its getting better as | find free time
Compared to modern proxies, its slower..

® .. but it handles a wide cross-section of
traffic loads (except “lots of traffic”..)

® . lots of traffic defined at ~ 1000 reg/sec
and about 200mbit of mixed traffic

Squid: internals

Single process/thread event loop for
everything but disk 1O

Non-blocking network 10
Has grown kqueue/epoll/etc support

Uses threads/processes to parallelise
blocking disk 10

Attempts to mitigate overload conditions
where humanly possible (ie: where | find
them)

Squid: whats wrong!?

® Far too much code ..

® ~ 25 functions account for 40% of CPU

® ~ 500 functions account for the other
60% of CPU (userland)

® |O done in small amounts

® Disk IO - 4k
® Network IO - 16k

® This isn’t as bad as you think.. read on

Squid: whats wrong!?

CPU: Core 2, speed 2194.48 MHz (estimated)

Counted CPU_CLK_UNHALTED events (Clock cycles when not halted) with a unit mask
of 0x00 (Unhalted core cycles) count 100000

samples % image name symbol name

216049 6.5469 libc-2.7.s0 memcpy

115581 3.5024 libc-2.7.s0 _int_malloc

103345 3.1316 libc-2.7.so vfprintf

85197 2.5817 squid memPoolAlloc

64652 1.9591 libc-2.7.so0 memchr

60720 1.8400 libc-2.7.so0 strlen

Squid: whats wrong!?

Codebase has grown organically

Squid-cluey programmers were hired by
Akamai, etc - suddenly no-one was working
on performance

Ten + years of features added on top of
poor structural base,and HTTP/I.1 still
hasn’t appeared..

.. but the poor structure is now looking
better

Squid: network 10?

(ACCELERATOR) (PROXY)
HTTP I/O HTTP I/O
number of reads: 19463301 number of reads: 3087754
Read Histogram: Read Histogram:

- I: 5194 0% - 1: 11327 0%

2- 2: 4675 0% 2- 2 208 0%
3- 4: 1588 0% 3- 4 1211 0%

5- 8 10412 0% 5- 8: 617 0%

9- 16: 351771 2% 9- 16: 1421 0%
|7- 32: 89452 0% 17- 32: 3400 0%
33- 64: 63398 0% 33- 64: 6079 0%
65- 128: 81808 0% 65- 128: 14680 0%
129- 256: 337836 2% 129- 256: 20808 1%
257- 512: 412245 2% 257- 512: 57378 2%
513-1024: 928914 5% 513-1024: 2931775 95%
1025- 2048: 14296942 73% 1025- 2048: 25183 1%
2049- 4096: 1731657 9% 2049- 4096: 3767 0%
4097- 8192: 808069 4% 4097- 8192: 4061 0%
8193-16384: 205358 % 8193-16384: 5839 0%
16385-32768: 60013 0% |6385-32768: 0 0%

Squid: Network 10O?

Talking over a LAN !=Talking over a WAN
Larger socket buffers == faster throughput
® But only up until bandwidth delay!

Larger socket buffers also == wasted RAM

Choose socket buffer size based on required
throughput and concurrency, based on
client delay.

® .. which can vary, so its tricky ..

Theoretical: <= 4k bufs

450000

T
1024 / x

2048 / x
400000 4096 / x

350000

300000

250000

200000

150000

100000

ical: <= 32k bufs

—

250000

102A/X
2048 / x
4096 / x
8192 /x
16384 / x
32768 / x

200000

150000

100000

Socket buffers (again)

® So socket buffer sizes are a tradeoff

® eg: 10,000 4k socket buffers: 40
megabytes

® eg 10,000 32k socket buffers: 320
megabytes

® Double that (at least) if the application
buffers in-flight data until the kernel says
its sent!

Squid: Disk 10

® Don’t use one-file-per-object for small,
frequently accessed files

® |f you do, at least pretend to dump
related objects in the same directory

® open/close metadata overheads are high

® |f you're unlucky, >2 seeks to open a file
that isn’t in VM/buffer cache

® ..and then the IO is done in 4k chunks

Squid: 4k disk 10?

Transfer rate at 32k (18gig |0krpm SCSI)
Runtime: 41.32 seconds, Op rate: 247.84 ops/sec, Avg
transfer rate: 8121367.38 bytes/sec

Transfer rate at 4k (18gig |10krpm SCSI)

Runtime: 32.27 seconds, Op rate: 317.28 ops/sec, Avg
transfer rate: 1299566.81 bytes/sec

ops/sec drop by 22%; transfer rate up by 6x

need to squeeze small objects into larger
blocks on disk and increase IO size

Squid: logging

It did use stdio calls for logging

.. which may block on buffer flush

® anecdotally, topping out the logging
performance at ~ 300 reqg/sec

Current logging code: log to memory buffer;
send buffer over pipe() to helper process

Later plans will turn this into a thread

Limited by Squid: can log ~ 4000 req/sec to
disk with no service impact

® |ike the object histogram, actual

Squid: reply sizes

reply sizes

(and the time length to serve them) varies

greatly

® Forward proxy: mix of small and large

® Accelerator: may be a mix; may be just

small, may be just large, may

® |f you're clever, you can handle al
cases efficiently enough

® .. Or YOU Can assume everyone IS

be both

of these

local..

Squid: reply sizes

® Sample |: Forward proxy

o <8k-31487I
< 64k - 2448235
< 256k - 333
<IM- 676l
< 32M - 20874
>32M - 3132

Most requests are < 64k; with a secondary small peak
between IM/ 32M

Squid: reply sizes

® Sample 2: (last.fm; used with permission)

o < 8k- 3249802
< 64k - 5618618
< 256k -1357
< IM - 33407
< 32M - 88592
>32M - 1511

® Again, most are <64k; ~ 100k (~1.2%) are >32M

® What are the implications of these!?

Squid: reply sizes

Those large replies will be streaming replies,
either from disk or from another server

Much more data transmitted!

Long-held connections, potentially filled TX
socket buffer

Transmitting these should not interfere with
small object replies

..and for the most part, Squid handles that
dichotomy fine

Squid: load shedding

® At some point you'll receive more requests
then you can handle

® You need to gracefully(ish) handle this so the
service doesn’t spiral into death

® Squid does this in a number of places
® Too many connections?! Stop accept()’ing

® Too much disk 10O? Stop disk HITs; fail to
MISSes

Squid: accept() rates

Balance accepting new connections and
handling existing connections

More difficult with poll()! (le, how often to
run poll() over the incoming vs all sockets)

In the past - full accept queue -> ignore new
requests

Currently (AFAICT) - full accept queue ->
RST new requests

Impacts service; impacts SLB logic

Squid: Disk 10

® Overloaded disk IO queue?

® First: Turn object creates into create
fails; limit hits to memory only

® Then:Turn object reads into fails; limit

hits to memory only - generally turn
into temporary MISS -> backend fetch

® Problem:increased backend load

® .. and this can also cause your
service to spiral down into death

Lighttpd: New Stuff

The Ruby crowd loves this thing for some
reason

Isn’t a HT TP server so much as a“HTTP
content router’”’

Save a few things (eg static, flv); all
complicated stuff is done via fastcgi back-
ends

Attempted to handle sendfile() where
appropriate

lighttpd: internals

® Again - select/kqueue/poll/epoll style event
loop with callbacks

® Monolithic process - SMP implemented as
simply running >| process

® Which works very well for what lighttpd
does

e Attempts to schedule “lO operations”
internally which map to a variety of options

® read, readv or sendfile, for example

lighttpd: whats right

® The majority of complicated behaviour is
implemented through fast-cgi modules

® |e, lighttpd doesn’t run PHP, etc in its
own process

® This frees up lighttpd to be a HT TP content
router to “other” things locally and/or over
the network

® |t just happens that it also serves static
content quite well

lighttpd: whats wrong

® “Chunk” interface - A list of “chunks” to
write to the client

® A “chunk’” could be memory, disk,
another network socket

® “disk” chunks would be read/sendfile
()’ed as needed..

® ..and the whole process stopped if
the read needed to block.

® Apparently fixed in later versions!

lighttpd: anecdotally

® Feedback from various teams inside a large
content provider

® |ighttpd doing straight static replies:
~ Ik: ~10,000 req/sec per CPU

~ 2k: ~8000 reg/sec per CPU
~ 4k: ~5000 reg/sec per CPU

> 8k:about the same speed as Squid

® 4k, 5000 req/sec => 200mbit / sec

Varnish

e (Hi PHK!)

® |nitially | had a lot to talk about, but my data
has fallen through from third parties

Varnish

® A good example of how far you can push
hardware and software

® A bit workload-specific : handles small
objects well; much larger objects not so well

® Anecdotal evidence about handling lots of
slow clients poorly (this is what | wanted
data about!)

Varnish: internals

(Insert PHK’s slides from last year here)

Pool of worker threads

Network/VM |O done sync, not async

Parallelism throug

Good pthread loc

n worker threads

cing, efficient parsing,

efficient data exchange, doesn’t abuse
memory allocator,VCL is shiny

Varnish: internals

® |nstead of complicated hard-coded rules (a
la Squid and most other things), forwarding
and caching logic is implemented in VCL

® Which is translated into C and inserted into
varnish at runtime

® Reliant on scatter-gather |O (good!) and VM
system (not so good, see below)

Varnish: in production

® Works great for some

® Hot workload fits in RAM; small objects?
Fantastic

® Anecdotally, doesn’t work great for others

® Slow backend w/ popular objects? Not
so good. (Squid -> “collapsed
forwarding”)

® Slow clients/servers -> not so good

Varnish:VM!

Varnish uses the VM system quite extensively

The VM system is great at the average, but
needs to be “taught” about HT TP access
patterns to optimise disk throughput

Eg: pack sma

Eg:do IO in

| objects into contiguous pages

arger parts to save on disk ops

Varnish: the “good”

® Scales well across multiple CPUs
® Handles its workload very well
® (le, puts other proxies to shame)
® Does stuff “differently” (in a good way)
® Eg - logging, statistics reporting

® VCL - don’t hard-code your application
logic!

Memcached

® Or,as | like to call it,"“mysqlcached”

® A memory object cache for storing and
retrieving “‘stuff”

e “stuff” is generally SQL queries, but can be
whatever the heck you want

Memcached: Internals

Started as a Squid-like single process async
event loop

® First time | saw it: it used libevent
® A couple years ago! - threaded
® N threads, one per CPU

® One thread handles incoming
connections

All threads: handle actual work

Memcached: scaling

It scales quite well..
.. but it isn’t a complicated program!

Memcached scaling is generally limited by
OS parallelism - FDs, socket, TCP, UDP, IP

Doesn’t need to schedule disk 10; all
operations are memory based

Memcache: issues

® Similar to Squid/Varnish: small objects pack
badly

® Apparently(!) Memcache tries to pack
objects using 32 bit pointers in 64 bit
environment

® Squid - 160 byte StoreEntry, 70 odd byte

MD?5; 30 odd byte MemObiject; 4k object
granularity

® Memory wastage on small objects

ibevent!

® |ibevent is a simple(!) library for scheduling
network |O events across UNIX platforms

® |Implements poll, select, kqueue, epoll, /dev/
poll, solaris event ports

® (and Windows; but thats a different story)

® Basic threading support - run multiple event
queues, one per thread

How is libevent used?

Create queue - event_base * event_init();

Run the queue - event_base loop
(event_base *);

Setup events - event_set(event * fd, what,
callback, data)

Throw event into a queue - event_base_set

0

Schedule event - event_add(event *, timeval

*)

Does libevent scale?

® Scales well across multiple CPUs - each
libevent queue runs seperately

® Event registration isn’t O(I) - uses trees for
registering timer/immediate events in
priority/order

® A “derivative’ libevent tries to avoid this
overhead

Trouble with Libevent

® Standard UNIX problem - inter-thread
communication

Thread sleeps on poll/select/kqueue/etc;
how does another thread wake it?

“portable” method - create pipe; write byte
to “wake” up destination thread to check
message queue

Each UNIX has a different way of solving
this!

How low can you go!

® A simple libevent-based TCP proxy

® accept() connection, connect() to
another; shuffle data

CPU parallelism by using one thread per
CPU

Core 2 Duo desktop: E2200

Variable socket sizes; variable concurrency

How far can things be pushed!?

TCP Proxy: One thread

One userland thread
One kernel thread for network device 1O
® Can split that into device/netisr threads

Throughput: ~4kbyte objects; ~400mbit/sec;
12000 reqg/sec - 24,000 sockets/sec

One CPU maxed userland; other CPU
mostly maxed doing device/netisr

TCP Proxy: two threads

Two userland threads

Same setup

Only incremental improvement - 500mbit;
slightly more requests/sec

Both CPUs at 100%
Why?

TCP Proxy: contention

® One particular area of contention:

o TCP PCB processing

® Robert/Kris will be working on this
® Userland CPU breakdown:

® <5% userland CPU both CPUs; so the
userland is fine

® |s it“doing” things efficiently?

TCP Proxy: buffer size

® What happens if you up the socket buf size?

® (And what happens if you up the transaction
size?)

Transaction size: higher throughput;
approaching 800mbit FDX

Socket buffer size: no appreciable
difference on LAN

Need to model WAN traffic a little
better!

Bandwidth Delay

.. this isn’t just a problem on the WAN

LAN’s have similar issues with gige/|Oge
pipesize

In summary - you end up having to pipeline

.. why would you need to pipeline on a
LAN?

(eg - NFS)

NFES and Delay

® Say, 4k transactions over the wire

® How can you get gigabit speed with 4k
transactions!?

® |00 megabytes/sec / 4kbyte/sec => ~25k
packets a second

® Fach transaction: 0.00004 sec (0.04 msec)

® |f your transaction for 4k block > 0.04msec,
you won'’t saturate gigabit ethernet

NES, Delay, real-world

® Comptuational cluster serving data over
NFS

® | egacy fortran code, ~ | kbyte data chunking

® Bad throughput!
CPU wasn’t maxed
Disks weren’t maxed

Network wasn’t maxed

o]

NES, Delay, Real world

® Problem is due to NFS transaction latency!

Disk 10 ..?

® | ots of applications do disk IO to push out
to the network

® Think about latency on disk |O + latency on
network O -> effective transfer rates

® UNIX network lO - traditionally sync
® POSIX AIO makes this less painful

® Faked using Threads/Processes

Scheduling Disk 10

® How its done in Squid:
® aio_read(fd, buf, size, callback, cbdata)
® .. buffer is returned

® .. event add(socket write event,
timeout)

® _.socket is ready

® write(sockfd, buf, size)

Scheduling disk 10O

® The problems!

® Standard UNIX read/write involves a
kernel copyin/copyout, which takes quite a
bit of time

® POSIX AIO in FreeBSD should make this

much less painful - shouldn’t copy disk
data

® Prefetching or no-prefetching?

Disk 10: prefetching?

® How much data can you pre-fetch!?

® Balance between reading slightly more
data from disk, and how much RAM in
your box (and buffer cache)

® mmap() !
® Again, potentially blocking!

® You have to manually lock pages or they
may even be removed underneath you..

Disk 10: sendfile

Sendfile is a “pretty word”

In essence - glue together a disk fd and a
socket fd; ask kernel to do the heavy lifting
for you without copying

You avoid two trips user->kernel for the disk
read, then the socket write

Traditionally: blocking only; so you need
threads to run the sendfile context()

(ie, one reason varnish is what it is..)

Summar

Writing efficient, scalable network

app

ications is hard

Unc

ple

JNC

erstand what you're trying to do

erstand how you can do it

erstand your protocol, hardware,

software

And above all - assume users will do dirty
things with it that you don’t expect!

Questions!?

Thankyou!

Adrian Chadd <adrian@FreeBSD.org>

mailto:adrian@FreeBSD.org
mailto:adrian@FreeBSD.org

