Porting FreeBSD/arm to Marvell SoC

Rafał Jaworowski raj@semihalf.com

BSDCan 2008, Ottawa

Introduction – TOC

- ARM architecture basics
- Highlights of contemporary FreeBSD/arm support
- Marvell SoC family overview
- Notes on porting FreeBSD/arm to Orion and Kirkwood
 - Host system, reference source code
 - Scope of porting activities (rework, new development)
 - Challenges and issues
 - Debugging, testing
- Current state of support
- Upcoming development

What is ARM?

- 32-bit RISC architecture designed by ARM Ltd.
 - Widely used in embedded applications
 - Recognized for low power consumption
 - From simple machines to advanced systems
- Very popular
 - Estimated 75% of all RISC CPUs on the market
- Licensed
 - A lot of incarnations from various vendors
- History
 - Origins at Acorn Computers Ltd. (80's)
 - Acorn RISC Machine >> Advanced RISC Machine >> ARM architecture
 - More significant: ARM6 (90's)

ARM nomenclature

- Multitude of variations, source of confusion...
- Family
 - ARM{*family*}{*features:* MMU, caches, Thumb, VFP, pipeline depth, synthesizable etc.}
 - ARM9TDMI, ARM9E, ARM10E, ARM11, ...
 - A group of processor implementations sharing the same H/W characteristics
- Architecture version
 - ARMv4T, ARMv5TEJ, ARMv6, ARMv6KZ, ...
 - Designates instruction set (Thumb first introduced in ARMv4T)
- Core
 - ARM926EJ-S, ARM1022E, ARM1156T2(F)-S, ...

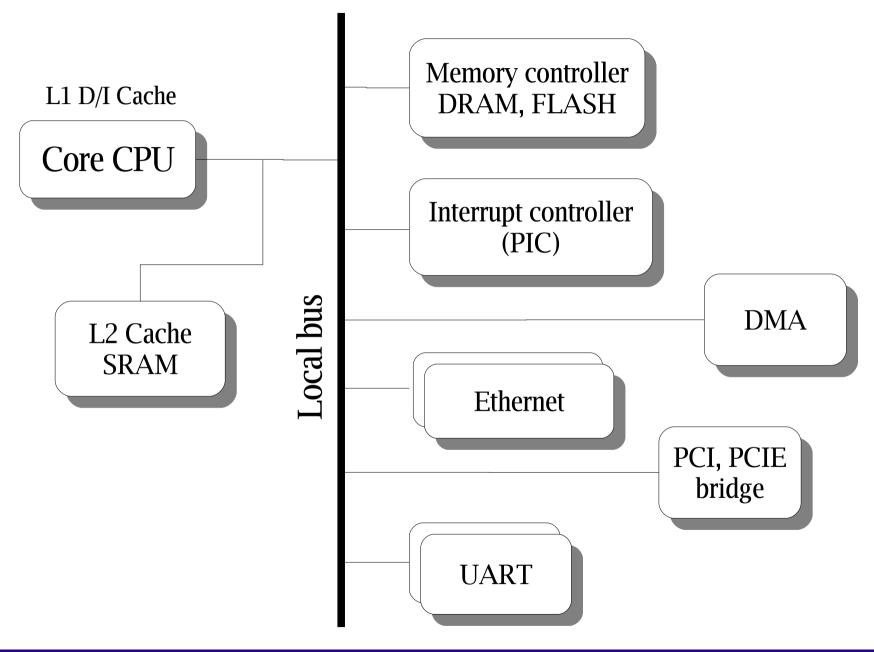
ARM technical highlights

• RISC

- Reduced number of instructions
- Pipelines: processing of instructions broken down to smaller units executed in parallel
- Registers: large set of general purpose registers
- Load-store architecture: CPU operates on data in registers, dedicated instructions for transfers between registers and memory
- ARM specific (non-RISC)
 - Variable execution time for some instructions
 - Thumb (effectively a second 16-bit instruction set)
 - Enhanced instructions (DSP, Jazelle, VFP etc.)

ARM technical highlights – cont'd

- Bus architecture
 - Von Neumann (ARM7): unified L1 cache
 - Harvard (ARM9 and beyond): split L1 cache
- L1 Caches
 - Virtual (ARM7-10)
 - Software maintained coherency
 - Flush/invalidate on every context switch
 - DMA issues
 - Physical (ARM11)
 - Hardware enforced coherency


ARM technical highlights – cont'd

- Memory mangement
 - MMU (demand paging)
 - MPU (simpler schemes)
- Usually ARM core is part of a System-On-Chip
- Soft-cores
 - synthesizable and netlist
- Hard-cores
- Not microprogrammed
- Unique features (Thumb, Jazelle, DSP, VFP)

Terminology

- Platform
 - Complete system
 - Analogous to a motherboard in a PC, only needs a PSU
 - Built around SoC
- SoC (System-On-Chip)
 - Highly integrated circuit
 - Local buses
 - Memory controllers (DRAM, FLASH etc.)
 - Peripherals (Ethernet, UART, PCI/PCIE bridges, USB, DMA engines)
 - CPU
- Core CPU
 - Main processing unit(s)
 - Integral part of the SoC

Generic System-On-Chip

Marvell SoC devices

- Common features
 - Based on the core compliant with ARMv5TE architecture spec
 - Integrated with many peripherals and offloading engines into one chip
 - Endian mode selected at boot time
- Extensions to ARM architecture, non-typical features
 - Out-of-order execution
 - Branch prediction
 - Super scalar pipeline
 - DSP extensions

Systems families

- Orion 88F5181, 88F5182
 - Feroceon 88FR331 CPU Core (150nm)
 - up to 500MHz
 - Single issue
 - Integrated I/D L1 cache (32KB/32KB)
 - 4-way, direct mapped
- Orion 88F5281
 - Feroceon 88FR531 Core (150nm)
 - up to 500MHz
 - Dual issue
 - Integrated L1 cache
 - Direct mapped 32KB I-cache
 - 4-way, set associative, 32KB D-cache
 - Write-allocate
 - Branch Target Buffer (BTB)
 - Vector Floating Point Unit (VFP)

- Kirkwood 88F6180, 88F6192, 88F6281
 - Feroceon 88FR131 CPU Core (65nm)
 - up to 1.5GHz
 - Single issue
 - Integrated I/D L1 cache (16KB/16KB)
 - 4-way, set associative
 - Unified L2 cache (256KB)
 - 4-way, set associative
 - Write-back or write-through
 - Physically tagged
 - Vector Floating Point Unit (VFP)

SoC features overview

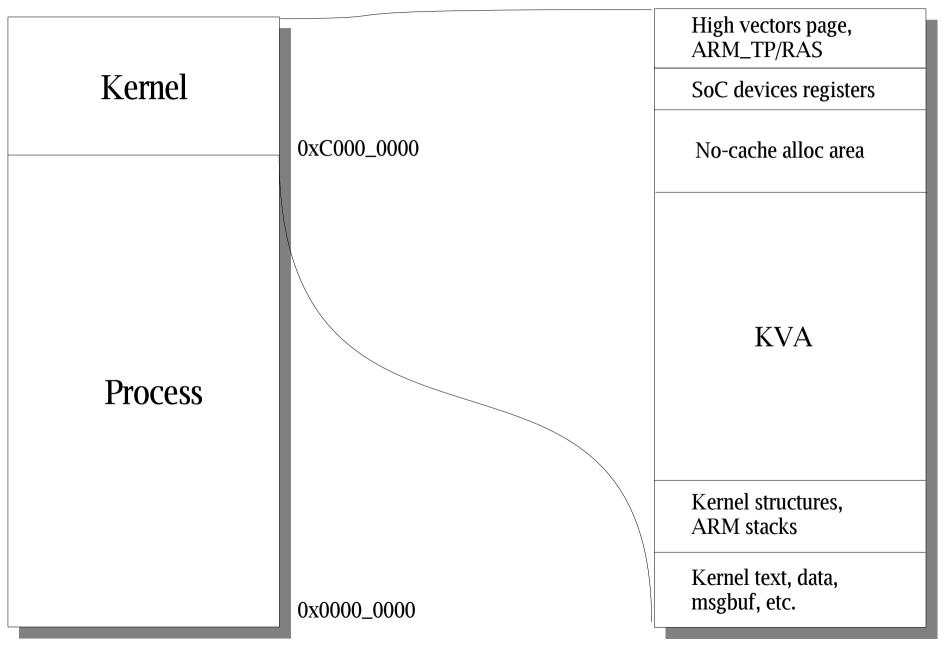
- 88F5281
 - Gigabit Ethernet
 - GPIO/MPP
 - IDMA engine
 - Interrupt controller
 - PCI/PCI-X, PCI-Express
 - TWSI (I2C), Timers, Watchdog
 - UART
 - USB 2.0

- 88F6281
 - Crypto engine
 - Gigabit Ethernet
 - GPIO/MPP
 - Interrupt controller
 - NAND
 - PCI-Express
 - SATA
 - SD/SDIO/MMC
 - S/PDIF, I2S
 - SPI
 - TDM
 - TWSI (I2C), Timers, Watchdog
 - UART
 - USB 2.0
 - XOR engine (DMA)

Development environment

- FreeBSD 8.0-CURRENT source tree
 - Started with mid-Nov 2007 snapshot
 - Keeping in sync, some 2-3 weeks behind latest HEAD
 - In-tree toolchain
- Development platform
 - Marvell reference designs: DB-88F5182, DB-88F5281, DB-88F6281, RD-88F6281
 - Complete systems
- Firmware
 - U-Boot derived from 1.1.4 version, extended with Feroceon support
 - Additional features with regards to stock U-Boot (diagnostics subsystem, extra dozen commands)

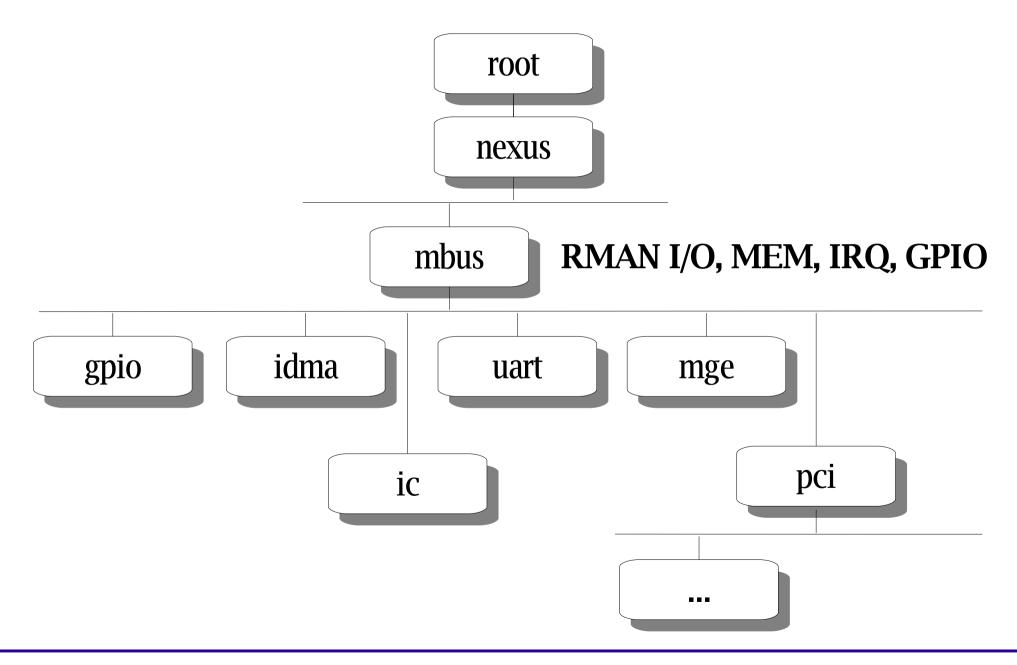
State of the FreeBSD/arm


- CVS
 - AT91
 - StrongARM 11x0
 - XScale: I80321, I8134x, IXP425
 - Released in FreeBSD 7.x
- Perforce
 - EP93xx
 - Orion 5x
 - S3C2xx0
 - XScale: PXA2x0
- Originates from NetBSD/arm port
- Most of the infrastructure in place
 - pmap(9), bus_dma(9), bus_space(9)

Scope of the Marvell SoC port

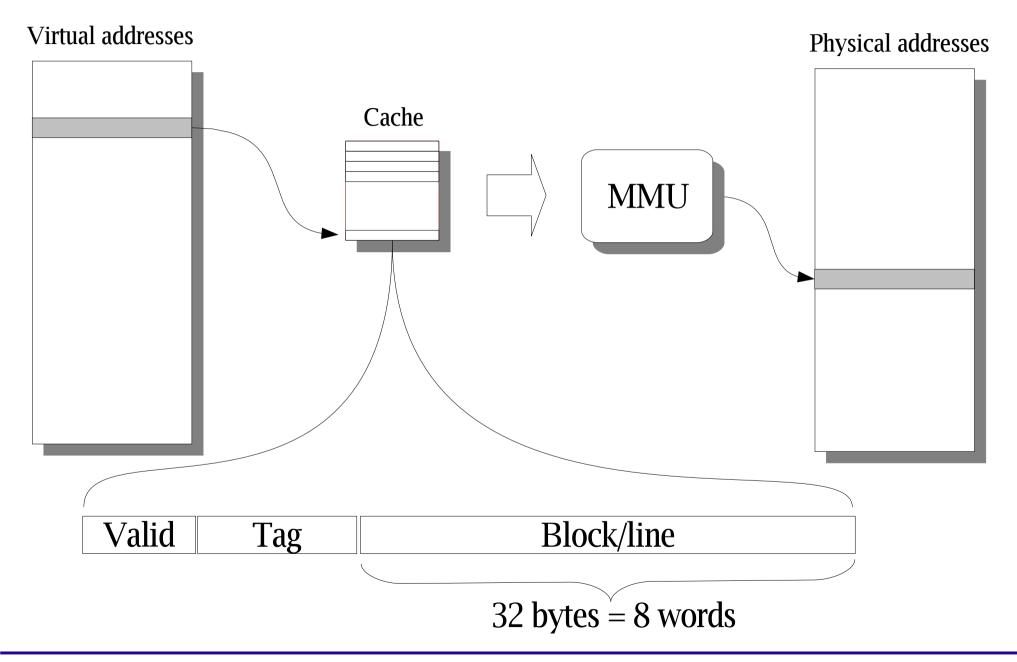
- ARM9E startup
 - Rework and extensions within existing ARM startup area
 - Optimizations for bigger KVA
- Machine-dependent
 - Flexible RAM size recognized when setting up pmap (page tables): more and more RAM
 - Decode windows, GPIO/MPP setup
- Device drivers hierarchy (*newbus*)
 - Internal bus model (mbus)
 - Critical drivers: timers, interrupt controller
 - Successful reuse example: uart(4), ehci(4), only *mbus* attachment required

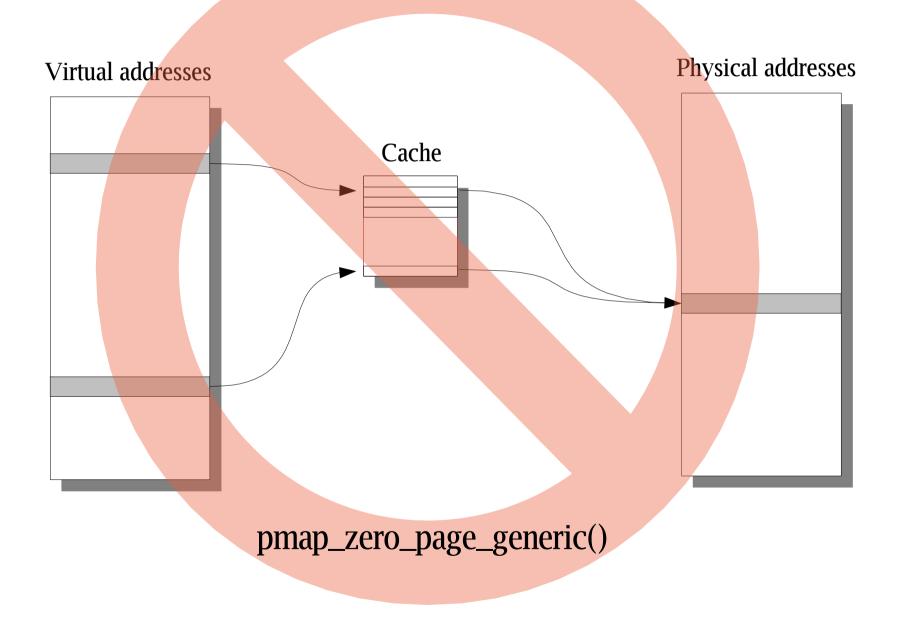
Simplified virtual memory view


0xFFFF_FFFF

New development highlights

- Gigabit Ethernet controller
 - mge(4)
- IDMA
 - General purpose DMA engine
 - idma(4) driver, test application
- TWSI (I2C)
 - Controller driver for iicbus(4) framework, test application
- PCI, PCI-Express
- Infrastructure
 - Decode windows setup
 - Low-level core operations (L2 cache support in newer Feroceons)
 - Design towards multi-SoC/multi-platform support


Newbus hierarchy


More challenging aspects – virtual cache

- ARM9
 - Virtually-tagged cache
- Coherency
 - Maintained by software
 - Issues not seen on systems with physically-tagged caches
 - Some drivers and code not well prepared: USB, pmap required additional/better handling or bus_dma(9) operations
- Write-allocate
 - Optional feature of write-back mode
 - Complicates virtual cache management
 - Important during "write miss" scenario

Virtual cache + write-allocate

Virtual cache + multiple mappings

Methodology notes

- Working with real targets, not simulator
- Reviewing code from all other FreeBSD architectures, other operating systems for reference
- Using available FreeBSD tools and infrastructure
 - MFS before networking or storage operational
 - GEOM_UZIP, mkuzip
- Debugging
 - JTAG H/W debugger
 - KDB/DDB: bring as early as possible
 - 7-seg LED are fun and help
- Testing
 - In-house developed test framework (expect)
 - Existing tools (iperf etc.)
- Lab

Current state of Orion support

- Single- and multi-user operation
 - Booting with root filesystem mounted from MFS, USB, NFS
 - Little Endian
- Single kernel image for 5x family, separate for 6x
- 5x already in Perforce
 - //depot/projects/arm/...
 - make buildkernel TARGET_ARCH=arm KERNCONF=DB-88F5XXX
- Unsupported
 - VFP (vector floating point coprocessor)
- Coming soon to a theatre near you!
 - Kirkwood 88F6281
 - Discovery MV-78100

Concluding remarks

- References

- //depot/projects/arm/
- sys/arm
- sys/arm/orion
- sys/dev/mge
- Acknowledgements
 - NetBSD Project
 - FreeBSD/arm team: Olivier Houchard, Sam Leffler, Kevin Lo (thanks for testing on the Linkstation system!), Warner Losh
 - Maen Suleiman @Marvell
 - Grzegorz Bernacki, Bartłomiej Sięka, Jan Sięka @Semihalf

Porting FreeBSD/arm to Marvell SoC

Rafał Jaworowski raj@semihalf.com

http://www.semihalf.com/pub/bsdcan/2008_marvell_freebsd.pdf

BSDCan 2008, Ottawa

