
SCTP: What is it, and how to use it?
Randall Stewart

Cisco Systems Inc.
4875 Forest Drive

Suite 200
Columbia, SC 29206

USA
Email: rrs@cisco.com

Michael Tüxen
Münster University of Applied Sciences

Department of Electrical Engineering
and Computer Science

Stegerwaldstr. 39
D-48565 Steinfurt

Germany
Email: tuexen@fh-muenster.de

Peter Lei
Cisco Systems Inc.

8735 West Higgins Road
Suite 300

Chicago, IL 60631
USA

Email: peterlei@cisco.com

Abstract—Stream Control Transmission Protocol (SCTP) is a
new transport protocol incorporated into FreeBSD 7.0. It was
first standardized by the Internet Engineering Task Force (IETF)
in October of 2000 in RFC 2960 and later updated by RFC 4960.
SCTP is a message oriented protocol providing reliable end to
end communication between two peers in an IP network. So, why
would one want to use SCTP instead of just using TCP or UDP?

This paper will try to answer that question by detailing services
provided by SCTP, and illustrating how SCTP can be easily used
with the socket API.

I. INTRODUCTION

Stream Control Transmission Protocol (SCTP) [4] is a
reliable, message oriented transport protocol that provides
new services and features for IP communication. For the
past twenty years, reliable communication service has been
provided by TCP [2], and unreliable service has been provided
by UDP [1]. So, what has brought about the addition of a third
protocol to the IP suite of protocols? Many of the features
found in TCP and UDP can also be found in SCTP. See
TABLE I for a comprehensive comparison of the features.

As you can see, SCTP overlaps and adds to the list of
features that an application developer can draw upon. The rest
of this document will be laid out as follows: In Section II we
will compare and contrast the feature sets of SCTP, TCP and
UDP. In Section III we will provide an overview of the socket
API used with SCTP. In Section IV we will get into some of
the details for using the SCTP socket API. In Section V we
will close with a brief review and a few conclusions.

II. A COMPARISON OF FEATURES

SCTP, like TCP, provides a connection oriented, full duplex,
reliable data communication path. Many of the standard fea-
tures you will find in TCP (congestion control, flow control,
etc.) can also be found in SCTP. However, unlike TCP, SCTP
provides a transport of messages, not just bytes. In this section
we will go through the unique and strikingly different features
found in SCTP. For features that are the same (e.g. congestion
control in TCP versus SCTP) we will not comment and allow
the reader to research the feature in TCP (if interested) since
SCTP and TCP will react in the same way.

Service/Features SCTP TCP UDP
Message-Oriented yes no yes
Byte-Oriented no yes no
Connection-Oriented yes yes no
Full Duplex yes yes yes
Reliable data transfer yes yes no
Partially-Reliable data transfer opt no no
Ordered data delivery yes yes no
Unordered delivery yes no yes
Flow control yes yes no
Congestion Control yes yes no
ECN Capable yes yes no
Selective Acknowledgments yes opt no
Path MTU discovery yes yes no
Application PDU fragmentation yes yes no
Application PDU bundling yes yes no
Multistreaming yes no no
Multihoming yes no no
Dynamic Multihoming opt no no
SYN flooding attack prevention yes no n/a
Allows half-closed state no yes n/a
Reach-ability check yes opt no
Pseudo-header for checksum no yes yes
Time wait state no yes n/a
Authentication opt opt no
CRC based checksum yes no no

TABLE I
FEATURE LIST

A. Ordering options

One of the two most striking features of SCTP is “multi-
streaming.” When you hear this term, what is being referred
to in reality is the ordering options that SCTP provides. The
term is also where the “stream” in SCTP’s name comes from.

In a classic TCP connection, you have no choices in the
ordering and presentation of your data to your peer. All bytes
transmitted are delivered in strict transmission order. In many
instances this is exactly what an application wants. Consider
for a moment a set of transactions to a banking system from a
client application. If a transfer of money is first sent, followed
by a sizable withdrawal from that account, we would not
want these two requests reversed in order; absolute order is
important.

Now consider that same set of transactions with multiple



EZ

EA P1P3 P2

EA

P3

P2

P1

EZ

Held

EA

Fig. 1. A lost packet

users involved. A withdrawal or deposit for customer A
is unimportant with respect to customer B (assuming the
transactions are not between customers A and B). Thus, if
the transactions being sent over the connection pertain to
multiple users, ordering between the separate transactions is
not important. In fact, strict ordering can actually cause an
undesirable additional delay in processing in the presence of
network loss. When such a delay happens, it is termed Head
of Line (HOL) blocking. But how exactly does this occur?

Let us consider a TCP connection as shown in Fig 1. The
sender, EA, sends Packets P1, P2 and P3. Note that to TCP
the data in each packet is dependent on what is in its send
queue at the time TCP decides to send the data. No message
boundaries are implied by the packets. In this transfer, we have
the unfortunate occurrence of a lost packet: P1 is lost. P2 and
P3 arrive safely, but since the data has not all arrived in order,
they are held by the TCP stack awaiting the retransmission
of P1. This will usually happen within one second or so
depending on TCP’s retransmission algorithms and timers for
the connection’s network path.

Now what has happened is that any data in P1 has caused
an HOL condition for data held within P2 and P3. In some
cases, as we have stated, this may be very desirable. However
in many instances, the information in P2 or P3 is not related
to P1 (as we also described above). This can cause delays
in processing of information that may be undesirable or
unacceptable to the application.

SCTP’s streams were designed to deal with this very
problem and provide a method for applications to have finer
grain control of what gets blocked by the SCTP stack when
such a packet loss occurs. When an application sends data,
it can specify a stream number to be used. There are up to

65,535 streams in an SCTP association1 (the exact number is
negotiated at association startup). When a message is sent in
Stream N, a loss of data that does not have any Stream N data
does not cause delays in delivery. In other words, when data
arrives in a given stream (N) it is only held for reordering
if other data is missing for that same stream. For example,
let us assume that P1 contains a message for stream 11, P2
contains a message for stream 2 and P3 contains a message
for stream 6. Only messages in stream 11 would be blocked
by the loss of P1 so both the payloads of P2 and P3 would
not be held but delivered immediately upon arrival2. Streams
allow an application to do selective ordering of messages.

SCTP also provides another ordering constraint that mimics
UDP (i.e. none). An application is allowed to send a message
as “unordered” on a per message basis. When an application
sends in this fashion, it is specifying that the data has no order
with respect to any other data sent previously. An unordered
message is placed into the delivery queue (often times termed
a socket buffer) immediately upon arrival.

The combination of streams and unordered data provide
powerful tools an application can use to provide fine grain
control over the delivery of data upon arrival at the peer
endpoint SCTP stack. Many applications in today’s Internet
can gain improved performance in the face of network loss by
using these features.

B. Multihoming

The second of the two key features of SCTP is multihoming.
A host that is multihomed has more than one point of
attachment to the network. In a traditional TCP connection,
one IP address and one port are chosen at each end to send and
receive packets with. The two IP addresses and ports selected
represent the four tuple identification of the TCP connection
(IP-A + Port-A, IP-Z + Port-Z).

In SCTP, an association is composed of two “sets” of
IP addresses and two ports. This means that if two hosts
are multihomed, all of their IP addresses can be involved
in sending and receiving data. In instances of lost packets,
SCTP will often select one of the alternate addresses to send
data to. This provides a form of network resilience in the
face of network loss and outages. Consider Fig 2(a). The
network connection to EZ via IP3 has failed, and EA sends
two packets P1 and P2 using IP3 as the destination. Naturally
the data will be lost, since there is an “airgap” between
the network and the host. Later, when EA’s SCTP stack
detects the loss (via timeout) the retransmission would take the
alternate path, as shown in Fig 2(b). This gives the application
additional redundancy. When you combine this with the ability
to fine tune the retransmission timers (including the minimum
and maximum values) an application can improve both its
availability and how quickly it will recover from network
errors.

1The use of the term association is common for SCTP and represents a
similar concept to a TCP connection.

2This assumes, of course, that no other losses have occurred.



IP−4

EA

P2 P1

EA

P2 P1

EZ

IP−2

IP−1 IP−3

IP−4

(a)

(b)

EZ

IP−2

IP−1 IP−3

EA

Fig. 2. Packet loss in a multi-homed scenario

An additional feature that many SCTP stacks offer is the
ability to dynamically reconfigure the IP address set that makes
up the association [6]. This provides the ability for an associ-
ation to survive an address renumbering or take advantage
of a hot-pluggable network interface without restarting the
association. Again, this unique feature provides yet again more
support to an application attempting to minimize down time.

Lastly, it is important to note that SCTP’s address sets allow
any mix of IPv4 and IPv6 addresses at each endpoint. That is,
an SCTP association may use both IPv4 and IPv6 addresses,
providing additional network path diversity.

C. Partial Reliability

Partial Reliability, as the name implies, allows SCTP to
control the amount of reliability an application wants on
a per message granularity. Consider a video game sending

character position updates every 400 milliseconds. If data is
lost and not retransmitted within that time period (400 ms),
then retransmitting the character position makes no sense since
a new updated one would already be en-queued. With the
addition of [3], SCTP gained the ability to specify how long
a message is “good” for. The initial RFC allows the user to
specify a “time to live” for each message. The sender makes
a decision based on this “time to live” as to when to stop
retransmitting and skip over the data.

The actual mechanism to skip over the data is separate from
the methodology used to determine when to skip over data.
This means that a sender can have many different “profiles”
for skipping data and the receiver does not need to have the
same “profile”.

Currently the authors are aware of three profiles commonly
implemented:

• Time based reliability
• Buffer based reliability
• Number of retransmissions

The time based profile follows RFC3758 in that the sender
specifies the number of milliseconds before the message
should be skipped. As many retransmissions that are possi-
ble will be made in the time allowed. For example, if the
application sends the data with a 9,000 millisecond reliability,
the message will be retransmitted several times3 if loss occurs.

Another reliability profile is buffer based. In this form, the
user specifies the maximum number of bytes of data that are
allowed to be on queue. If the size of the queue specified is
reached, then the oldest data (marked in this manner) is looked
to be skipped so that the new data can be added to the queue
of outgoing data.

The number of retransmissions profile allows an application
to specify how many times the data will be retransmitted.
So, for example, if the application specified zero times no
retransmissions would be made4.

In all cases, no matter which profile is used, fully reliable
and partially reliable data may be mixed. In effect, a single
stream may have both reliable and partially reliable data en-
queued on it. This also has ramifications to the buffer based
method in that if the entire association is filled with fully
reliable data, then the new send itself will be the one subject
to “skipping.”

D. Message boundaries

Message boundary preservation is a small incremental fea-
ture added to SCTP that many developers will be happy to see.
When you think of an interaction between two applications,
rarely do they exchange a “stream of bytes”. Rather, they send,
receive, and act upon messages. In a TCP connection, each
message must be framed in some way as any read of a buffer
may return parts of two separate messages. The application

3The exact number of times is based on factors such as the minimum and
maximum RTO.

4This is similar to UDP except that this profile assures that at least one
transmission occurs, whereas UDP makes no such assurance



needs to provide application layer code that parses the message
based on the way the messages were framed by the sender.

With SCTP, messages are never merged together upon
reading. As long as a large enough buffer is provided for
reading, each read returns a single message. Each send is
considered to be a message in itself5. As a consequence, the
application does not need to track by sender nor receiver where
the message boundaries are.

Note that message boundary preservation does have impact
on how messages are transmitted. SCTP is capable of bundling
multiple messages together and even splitting a large message
over multiple Protocol Data Units (PDUs). How the bundling
or splitting occurs is often driven by the size of the messages
the user is sending and the Path Maximum Transport Unit
(PMTU).

E. Security

Security is a topic of some importance since a transport pro-
tocol that is subject to easy attack is not acceptable in today’s
often hostile Internet. SCTP has several unique features that
help strengthen its security to blind attacks, and an optional
extension [5] that provides even more capabilities.

Every SCTP association starts with a four way handshake.
This four way handshake includes a signed cookie that the
passive server side sends to the active initiating client. The
server holds no state, and thus is not subject to the SYN
flooding attack.

In the first two packets during the setup exchange, a 32-
bit random value is supplied by both endpoints. This 32-bit
random nonce serves as a verification tag (vtag). All packets
sent must include the vtag supplied by the peer during setup
of the association, in order to be accepted by the receiving
SCTP stack. This means that a blind attacker must generate 2
billion guess (on average) in order to say inject an “ABORT”
chunk to tear down the association.

The authentication option RFC4895 [5] adds the ability for
any chunk to be required to be signed in such a way so that the
receiver can know without doubt that the source was indeed
the expected sender. Even applications that decide not to use
shared keys can still gain some measure of security assuming
that the first two packets that setup an association are not
intercepted by a man in the middle.

Note that even though SCTP uses a four way handshake,
this does not cause delay in getting the first data messages to
the receiver. In fact, due to the way most TCP stack socket
API’s work, SCTP usually can get the first data chunk to its
peer one half of a round trip quicker than TCP.

F. Other differences

There are a few other differences worth noting in any
comparison of IP transports. One of the obvious differences
is the checksum. In both UDP and TCP, a summation is
used of all bits in the message. The summation is done as a

5Note that there are mechanisms to explicitly avoid this premise, but the
default behavior is such that every send is a message

simple addition of all bytes in the message including a pseudo-
header. The pseudo-header is selected parts of the IP header
to help detect when a router misdirects a packet. For SCTP, a
Cyclic Redundancy Check is used (CRC32c). A CRC is much
stronger than a checksum and provides much better protection
against bit errors and packet damage done by routers and other
network devices.

The pseudo-header mentioned above is not needed in SCTP.
The reason is the vtag discussed earlier. The pseudo-header, as
noted, is used to detect misrouted packets in the checksum. For
SCTP, the 32-bit random nonce provides this same protection
without the need to embed a hidden field in the packets
checksum.

Another consequence of the use of a vtag is the absence
of the timed-wait state in the protocol state machine. In TCP,
for some period of time after an endpoint shuts down, the
TCP stack prevents the port from being bound. This period
of time is called the “timed-wait” period and normally last
for about two minutes. The purpose of this “timed-wait” is to
allow lingering packets with the same four-tuple to drain from
the network. In SCTP, the vtag, protects us from this same
situation as long as vtags themselves are reused in a “timed-
wait” manner. As long as a different vtags are used, the same
port may be immediately re-used for a new association to the
same peer endpoint.

SCTP also includes a required heartbeat mechanism for
path management. In contrast, TCP has an optional keep-
alive mechanism which must be explicitly enabled by the
application.

One other striking difference between TCP and SCTP is the
absence of the half closed state. In a TCP connection, one side
is allowed to inform the peer that it will send no more data
but will continue to accept data from the peer. This state is
known as half closed. SCTP does not allow this behavior. If
a user closes one side, then the connection will shutdown.

G. A word about optional features

In the preceding sections, we have mentioned several op-
tional features. You might wonder which of them should I
expect from my implementation. It is the authors’ opinion that
a complete SCTP implementation should include:

1) RFC4960 (basic SCTP)
2) RFC3758 (partial reliability)
3) RFC4895 (authentication)
4) RFC5061 (dynamic addresses)
There are other drafts and extensions that are currently being

reviewed by the IETF, but those will truly be optional in our
opinion. The ones listed above, however, though optional, we
consider quite necessary for a full featured SCTP stack.

III. SOCKET API OVERVIEW

Now that we have discussed some of the features and
function of SCTP, let us talk about how you can use this
powerful new protocol. As with TCP and UDP, the socket
API is the most common method of accessing and using SCTP.
Before diving deeper into the details of SCTP’s socket API we



will first get an overview of some of the basic elements and
choices that an application writer will have when using SCTP.

A. Models

First and foremost, when we go to use SCTP, is that we
now have two choices. The SCTP socket API provides two
models: the one-to-one model and the one-to-many model.

The one-to-one model is based on a one to one relationship
between the socket and a SCTP association (not taking the lis-
tening sockets into account). This is similar to a standard TCP
socket. For the one-to-many model, there is a one-to-many
relationship between the socket and the SCTP-associations.
This is similar to using unconnected UDP sockets.

The one-to-one model is basically a “TCP” compatibility
model. This model works the same exact way that the standard
TCP socket API model works. A server will typically call
socket(), bind(), and listen(). Then after the initial
setup will sit in a loop calling accept() to gain new
connections. Each new connection is a new socket descriptor
on which the new connection is available to send and receive
data on. The application must track each individual socket
descriptor for each connection setup. The client will call
socket() followed by a call to connect() to the address
of the server.

The major advantage to this model is that a simple change
to existing TCP code will allow that code to work with SCTP.
To access this model, a user calls socket(int domain,
int type, int proto) with type set to SOCK_STREAM
and proto set to IPPROTO_SCTP. Note that the domain
argument is generally how you choose between IPv6 and IPv4
(PF_INET6 and PF_INET).

The one-to-many model is designed as a peer-to-peer type
model. In this model, both sides generally call socket()
followed by listen(). Then, when they wish to exchange
information with a peer, they call sendto() or recvfom()
(or any of the extended send or receive calls, see section IV).
Note that the one single socket will have multiple associations
underneath it. Only one socket descriptor is ever used in this
model, calling accept() will return an error. One of the
advantages to this model is the ability to send data on the
third leg of the four way handshake6. Another advantage is
that an application does not really need to track association
state. In order to be truly free of association state, however,
the application is recommended to turn on the AUTO_CLOSE
socket option that will automatically close associations that
are idle for long periods.

Accessing the one to many model is done by calling the
socket system call specifying the type as SOCK_SEQPACKET
and the proto as IPPROTO_SCTP.

B. Notifications

While developing the socket API for SCTP, it became
quickly obvious that the transport stack itself would often have

6Note that some implementations do allow this with the one-to-one model
at the expense of breaking TCP compatibility.

useful things to tell the application (if the application is inter-
ested). The existing socket API had no method for the transport
to easily communicate events that were happening within
the transport. To deal with this, the socket API for SCTP
allows an application to subscribe to event “notifications”. The
subscription is done by setting one of the SCTP socket options.
Once one or more events are turned on, and when the SCTP
stack has one of those events to tell the application, it sends
an event notification message to the application up the normal
data path with the flags field set to MSG_NOTIFICATION.
That is, it multiplexes the event notification messages with
peer user messages. When a user application subscribes to
these events, it is in effect acknowledging to the SCTP stack
that it (the application) understands it must look at the flags
field before interpreting a message, since it is possible it is
not a message from a peer but from the transport itself.

There are currently eight types of notifications. They are:
• Association events - the starting and closing of new

associations
• Address events - information about peer addresses, fail-

ures, additions, deletions, confirmations.
• Send Failures - When a send fails, the data is returned

with an error if you subscribe to this event.
• Peer Error - If the peer sends an error message the stack

would pass the TLV up the stack in this notification.
• Shutdown events - Indications that a peer has closed or

shutdown an association.
• Partial delivery events - this notification will indicate

issues that may occur in the partial delivery api.
• Adaptation layer event - this notification holds a adapta-

tion indication.
• Authentication event - Various authentication events (such

as new keys activated) would be signaled by this notifi-
cation.

Often applications will not be interested in a number of
these notification. Two of the most useful notifications for the
one-to-many model are the Association and Shutdown events.
Within these events is an association identification often called
assoc_id. This id identifies a specific association within
the one-to-many socket. It can also be used with some of the
extended socket API calls used for sending messages (instead
of using a socket address). Many of the socket options used
with SCTP will take the assoc_id as an argument to identify
which specific association to change or gather settings on,
instead of the whole socket descriptor.

We will discuss notifications in more detail in the next
section.

C. Extended calls

All of the existing socket API calls will work with SCTP
seamlessly to provide most of all of the functions needed.
However, there are limitations for a few corner cases in either
the utility or in the ease of use of many of the common API
calls. For example, the existing socket API does not adequately
address the following cases:

• For binding addresses, you can have one or all addresses.



struct sctp_event_subscribe {
uint8_t sctp_data_io_event;
uint8_t sctp_association_event;
uint8_t sctp_address_event;
uint8_t sctp_send_failure_event;
uint8_t sctp_peer_error_event;
uint8_t sctp_shutdown_event;
uint8_t sctp_partial_delivery_event;
uint8_t sctp_adaptation_layer_event;
uint8_t sctp_authentication_event;

#ifdef __FreeBSD__
uint8_t sctp_stream_reset_events;

#endif
};

Fig. 3. The SCTP Event Subscription structure

• For connecting to a peer, you can connect to one and
only one address.

• For sending or receiving, getting access to the stream
information is rather awkward.

To solve these problems, there are extensions to the socket
API to add additional capabilities as well as make some
existing features easier to use. New “system calls” have been
added specifically for SCTP. Note that a new system call may
be no more than a utility library routine that eases access to
a specific feature.

We will discuss each of the extended socket API calls as
well as other features such as notifications and socket options
in IV.

IV. SOCKET API - DETAILS

Now that you have a general idea of the advantages of SCTP,
you are probably wondering how you access these features.
This section will try to highlight and provide a rough overview
of the way a user can best interact with SCTP.

A. Notifications

As mentioned earlier SCTP can provide information to the
user via notifications. Notifications are received in the data
path i.e. by recvmsg() or sctp_recvmsg(). You could
in theory use recvfrom() or recv() but then you would
have no way of knowing if the message was a notification
from SCTP or a real peer message. All notifications are
disabled by default, so an application must set a socket option
(SCTP_EVENTS) to turn on one or more notifications. Once
you enable a notification, you are making an implicit pledge
to the SCTP stack that you will not use recvfrom() or
recv(). If you violate that pledge, you will most likely be
confused by messages arriving from both the peer application
as well as the SCTP stack.

The SCTP_EVENTS socket option takes has input a struc-
ture as shown in Fig. 3. Note that each uint8_t field is
interpreted as a boolean, where a zero value turns off the
notification and a non-zero value turns on the notification.

struct sctp_sndrcvinfo {
uint16_t sinfo_stream;
uint16_t sinfo_ssn;
uint16_t sinfo_flags;
uint16_t sinfo_pr_policy;
uint32_t sinfo_ppid;
uint32_t sinfo_context;
uint32_t sinfo_timetolive;
uint32_t sinfo_tsn;
uint32_t sinfo_cumtsn;
sctp_assoc_t sinfo_assoc_id;

};

Fig. 4. The SCTP sndrcvinfo

struct sctp_assoc_change {
uint16_t sac_type;
uint16_t sac_flags;
uint32_t sac_length;
uint16_t sac_state;
uint16_t sac_error;
uint16_t sac_outbound_streams;
uint16_t sac_inbound_streams;
sctp_assoc_t sac_assoc_id;

};

Fig. 5. Association notification

The careful reader will notice two distinctions. There is
an extra event for FreeBSD (found in the #ifdefs), and
there is a “notification” that was not listed previously,
sctp_data_io_event. The data io event is not really a
notification, but the ability to receive extra information as
ancillary data with the receive calls. The extra information
tells you the stream number as well as other ancillary data.
If you wish to receive this information you must enable the
“event” just like you would for a notification.

Note when the sctp_data_io_event event is enabled
you will receive the sctp_sndrcvinfo structure with every
recvmsg() or sctp_recvmsg() call. You cannot receive
this information with the recv() or recvfrom() calls. In
the sctp_recvmsg() call, the sctp_sndrcvinfo struc-
ture is an argument passed in the call. For the recvmsg()
call, the user will need to parse ancillary data for type
SCTP_SNDRCV. The sctp_sndrcvinfo is shown in
Fig. 4.

Each notification, as mentioned, provides you with a specific
structure. We will examine two of the notifications and leave
the rest as an exercise for the reader. [7] and [8] may also be
helpful.

One of the most common notifications an application will
be interested in is the association events notification. This
notification tells you about changes in associations, including
the arrival of new associations. Refer to Figure 5 for the
full structure. Some notable fields from this structure are
sac_type, sac_flags, and sac_length. Every notifi-



struct sctp_paddr_change {
uint16_t spc_type;
uint16_t spc_flags;
uint32_t spc_length;
struct sockaddr_storage spc_aaddr;
uint32_t spc_state;
uint32_t spc_error;
sctp_assoc_t spc_assoc_id;
uint8_t spc_padding[4];

};

Fig. 6. Address change notification

cation begins with these type, flags and length fields. This
allows the receiver to cast the structure to a base notification
structure and then examine the type to know exactly which
notification has arrived. In this particular notification, an appli-
cation may be interested in sac_outbound_streams and
sac_inbound_streams, which tells the user how many
streams were negotiated (note this may not be the number
expected by the application and the two values are not neces-
sarily equal). Another useful field is the sac_assoc_id. As
indicated earlier, this field uniquely identifies this association
and can actually be used as a destination when using the
advanced SCTP API send calls.

Another notification often subscribed to can be found in Fig-
ure 6. This notification arrives when some event has occurred
concerning one of the peer’s addresses. The spc_state field
will reflect what happened with the address. Possible address
events include:

• It was added (SCTP_ADDR_ADDED).
• It was deleted (SCTP_ADDR_REMOVED).
• It is now reachable (SCTP_ADDR_AVAILABLE).
• It is now un-reachable (SCTP_ADDR_UNREACHABLE).
For fault tolerant applications, tracking the states of the

peer’s addresses may well be an essential job.

B. Extended system calls

SCTP provides some additional system calls:
• sctp_recvmsg(int sd, void *msg, size_t
len, struct sockaddr *from, socklen_t

*fromlen, struct sctp_sndrcvinfo

*sinfo, int *flags)
• sctp_sendmsg(int s, void *msg, size_t
len, struct sockaddr *to, socklen_t
tolen, uint32_t ppid, uint32_t flags,
uint16_t stream, uint32_t timetolive,
uint32_t context)

• sctp_send(int sd, void *msg, size_t
len, struct sctp_sndrcvinfo *sinfo,
int flags)

• sctp_bindx(int sd, struct sockaddr

*addrs, int addrcnt, int type)
• sctp_connectx(int sd, struct sockaddr

*addrs, int addrcnt, sctp_assoc_t

*assoc_id)
• sctp_sendx(int sd, void *msg, size_t
len, struct sockaddr *addrs, int
addrcnt, struct sctp_sndrcvinfo *,
int flags)

• sctp_sendmsgx(int s, void *msg,
size_t len, struct sockaddr *to, int
addrcnt, socklen_t tolen, uint32_t
ppid, uint32_t flags, uint16_t stream,
uint32_t timetolive, uint32_t context)

The first three essentially provide some convenience functions
to the user. Their functionality can be provided by using equiv-
alent sendmsg() and recvmsg() calls with the appropriate
handling of the required ancillary data.

The last four functions are necessary to make the
support of multihoming possible. sctp_bindx() makes
it possible to bind an arbitrary set of local addresses
to a socket, rather than the “all or none” that bind()
provides. sctp_connectx(), sctp_sendx() and
sctp_sendx() make it possible to use multiple known
addresses of the peer already during the association setup.
Without these functions, multihoming would only be available
after the association has been completely established.

C. Socket Options

SCTP provides a large set of socket options as shown in
TABLE II, and some FreeBSD specific extensions as shown
in TABLE III. This is due to the fact that SCTP allows a
lot of protocol parameters to be controlled by the user. Also,
some protocol extensions, like the SCTP-AUTH [5] extension,
use socket options to control the feature (e.g. controls hash
algorithms, keys, chunks to authenticate, etc.). The usage of a
few of these options are described in the examples in the next
section. For a detailed description, see [7].

D. Some Examples

In this section, we will provide example code for a simple
client which sends a number of messages to a server, and a
server which just discards all received messages. The client
will use the one-to-one model and the server will use the
one-to-many model. Of course, despite using different pro-
gramming models, the client and server can still communicate
properly.

Let us first consider the server in Figure 7. In line 22, a
one-to-many style socket is created. A method of enabling
all notifications is shown in lines 25–27. Then in lines 31–
38, the socket is bound to the IPv4 wildcard address and
the well known port for the discard service. To allow the
kernel to accept SCTP associations on the discard port, the
socket is put into listening mode in line 41. The reception of
messages and notifications is handled by the infinite loop in
lines 45–62. sctp_recvmsg() is used in line 51 to read
event notifications or peer user messages, after initializing
several variables in lines 46–49. If a notification is received,
only a simple message is printed. For a received user message,
the length, source address and port number, stream identifier



Option R-W Description
SCTP RTOINFO rw RTO min/max
SCTP ASSOCINFO rw Association parameters
SCTP INITMSG rw Setup options
SCTP NODELAY rw Nagle algorithm
SCTP AUTOCLOSE rw Automatic closing
SCTP SET PEER PRIMARY ADDR rw Remote primary
SCTP PRIMARY ADDR rw Local primary
SCTP ADAPTATION LAYER rw AI indication
SCTP DISABLE FRAGMENTS rw Fragmentation
SCTP PEER ADDR PARAM rw Misc parameters
SCTP DEFAULT SEND PARAMS rw Default sendrcvinfo
SCTP EVENTS rw Notifications
SCTP I WANT MAPPED V4 ADDR rw Mapped v4 addresses
SCTP MAXSEG rw Fragmentation point
SCTP DELAYED SACK rw Delayed sack
SCTP FRAGMENT INTERLEAVE rw Receive interleave
SCTP PARTIAL DELIVERY POINT rw receive PD point
SCTP AUTH CHUNK w Add Auth Chunk
SCTP AUTH KEY w Add Auth key
SCTP HMAC IDENT rw hmac algo
SCTP AUTH ACTIVE KEY rw Active key
SCTP AUTH DELETE KEY w Delete key
SCTP USE EXT RCVINFO rw Extended sndrcvinfo
SCTP AUTO ASCONF rw Automatic IP add/del
SCTP MAXBURST rw Microburst control
SCTP CONTEXT rw Default context
SCTP EXPLICIT EOR rw Explicit EOR
SCTP STATUS r Assoc status
SCTP GET PEER ADDR INFO r Info on dest
SCTP PEER AUTH CHUNKS r Peer requires auth
SCTP LOCAL AUTH CHUNKS r Local requires auth
SCTP GET ASSOC NUMBER r Number of assocs
SCTP GET ASSOC ID LIST r Assoc ids

TABLE II
SCTP SOCKET OPTIONS

Option R-W Description
SCTP RESET STREAMS w Stream reset
SCTP SET DEBUG LEVEL rw Debug output
SCTP CMT ON OFF rw CMT on/off
SCTP CMT USE DAC rw DAC with CMT
SCTP PLUGGABLE CC rw Set CC
SCTP GET SNDBUF USE r Send space
SCTP GET NONCE VALUES r Vtag pair
SCTP SET DYNAMIC PRIMARY w Global primary
SCTP GET PACKET LOG r Packet log
SCTP VRF ID rw Default VRF
SCTP ADD VRF ID w Add a VRF
SCTP GET VRF IDS r Get VRF IDs
SCTP GET ASOC VRF r Assoc VRF ID
SCTP DEL VRF ID w Delete VRF ID

TABLE III
SCTP FREEBSD SPECIFIC SOCKET OPTIONS

and payload protocol identifier is printed. It should be noted
that this simple program does not check if the notification
or message was completely received by checking for the
MSG_EOR flag. In line 64, the socket would be closed, but
this line will never be executed.

The second example is a simple client shown in Figure 8,
which sends a number of messages of the same length to a
discard server.

In line 27, a one-to-one style socket is created. In lines 31–
36, the number of outgoing streams to be requested during
association setup is set to 2048. Then the association is
established in line 48. Since the number of incoming and
outgoing streams is negotiated during the association setup,
the number of streams is retrieved in lines 50–54 via a socket
option. Then all messages are sent via a sctp_sendmsg()
call in lines 57–60. A given payload protocol identifier is
used, and the stream number to send with is used in a round
robin fashion. In line 65, the association teardown procedure
is started by closing the socket.

V. CONCLUSION

This paper describes the features provided by SCTP and
gives a glimpse into the many ways an application can control
and configure it. SCTP has been designed to be flexible and
yet provide reasonable defaults for applications that do not
wish to dig into the deep details of controlling the transport.
For applications that need more control, SCTP provides a wide
host of socket options and a multitude of ordering options.

In general, SCTP can be used any place TCP can be used
and gives the application greater flexibility. No longer does
the application need to frame messages, the transport does
that for you. No longer does the application need to worry
about connection state (when using the one to many socket
model). SCTP may also be used in cases where one might
consider UDP, assuming a full featured implementation of
SCTP including Partial Reliability.

The authors encourage you to go and explore SCTP it will
become addictive.

Happy SCTPing.

REFERENCES

[1] J. Postel, “User Datagram Protocol”, RFC 768, August 1980.
[2] J. Postel, “Transmission Control Protocol”, RFC 793, September 1981.
[3] M. Tüxen et al., “Stream Control Transmission Protocol Partial Reliability

Extension”, RFC 3758, May 2004.
[4] R. Stewart, “Stream Control Transmission Protocol”, RFC 4960, Septem-

ber 2007.
[5] R. Stewart et al., “Authenticated Chunks for the Stream Control Trans-

mission Protocol”, RFC 4895, August 2007.
[6] R. Stewart et al., “Stream Control Transmission Protocol Dynamic

Address Reconfiguration”, RFC 5061, September 2007.
[7] R. Stewart et al, “Socket API Extensions for Stream Control Transmission

Protocol (SCTP)”, draft-ietf-tsvwg-sctpsocket-16.txt, work in progress.
[8] R. Stevens et al., “UNIX Network Programming Volume 1 Third Edi-

tion”’, Addison Wesley, 2004.



1 #include <sys/types.h>
2 #include <sys/socket.h>
3 #include <netinet/in.h>
4 #include <netinet/sctp.h>
5 #include <arpa/inet.h>
6 #include <string.h>
7 #include <stdio.h>
8 #include <unistd.h>
9

10 #define BUFFER_SIZE (1<<16)
11 #define PORT 9
12 #define ADDR "0.0.0.0"
13
14 int main(int argc, char *argv[]) {
15 int fd, n, flags;
16 struct sockaddr_in addr;
17 socklen_t from_len;
18 struct sctp_sndrcvinfo sinfo;
19 char buffer[BUFFER_SIZE];
20 struct sctp_event_subscribe event;
21
22 if ((fd = socket(AF_INET, SOCK_SEQPACKET, IPPROTO_SCTP)) < 0) {
23 perror("socket");
24 }
25 memset((void *)&event, 1, sizeof(struct sctp_event_subscribe));
26 if (setsockopt(fd, IPPROTO_SCTP, SCTP_EVENTS,
27 &event, sizeof(struct sctp_event_subscribe)) < 0) {
28 perror("setsockopt");
29 }
30
31 memset((void *)&addr, 0, sizeof(struct sockaddr_in));
32 #ifdef HAVE_SIN_LEN
33 addr.sin_len = sizeof(struct sockaddr_in);
34 #endif
35 addr.sin_family = AF_INET;
36 addr.sin_port = htons(PORT);
37 addr.sin_addr.s_addr = inet_addr(ADDR);
38 if (bind(fd, (struct sockaddr *)&addr, sizeof(struct sockaddr_in)) < 0) {
39 perror("bind");
40 }
41 if (listen(fd, 1) < 0) {
42 perror("listen");
43 }
44
45 while (1) {
46 flags = 0;
47 memset((void *)&addr, 0, sizeof(struct sockaddr_in));
48 from_len = (socklen_t)sizeof(struct sockaddr_in);
49 memset((void *)&sinfo, 0, sizeof(struct sctp_sndrcvinfo));
50
51 n = sctp_recvmsg(fd, (void*)buffer, BUFFER_SIZE,
52 (struct sockaddr *)&addr, &from_len,
53 &sinfo, &flags);
54
55 if (flags & MSG_NOTIFICATION) {
56 printf("Notification received.\n");
57 } else {
58 printf("Msg of length %d received from %s:%u on stream %d, PPID %d.\n",
59 n, inet_ntoa(addr.sin_addr), ntohs(addr.sin_port),
60 sinfo.sinfo_stream, ntohl(sinfo.sinfo_ppid));
61 }
62 }
63
64 if (close(fd) < 0) {
65 perror("close");
66 }
67
68 return (0);
69 }

Fig. 7. Discard server using the one-to-many model.



1 #include <sys/types.h>
2 #include <sys/socket.h>
3 #include <netinet/in.h>
4 #include <netinet/sctp.h>
5 #include <arpa/inet.h>
6 #include <string.h>
7 #include <stdio.h>
8 #include <unistd.h>
9

10 #define PORT 9
11 #define ADDR "127.0.0.1"
12 #define SIZE_OF_MESSAGE 1000
13 #define NUMBER_OF_MESSAGES 10000
14 #define PPID 1234
15
16 int main(int argc, char *argv[]) {
17 unsigned int i;
18 int fd;
19 struct sockaddr_in addr;
20 char buffer[SIZE_OF_MESSAGE];
21 struct sctp_status status;
22 struct sctp_initmsg init;
23 socklen_t opt_len;
24
25 memset((void *)buffer, ’A’, SIZE_OF_MESSAGE);
26
27 if ((fd = socket(AF_INET, SOCK_STREAM, IPPROTO_SCTP)) < 0) {
28 perror("socket");
29 }
30
31 memset((void *)&init, 0, sizeof(struct sctp_initmsg));
32 init.sinit_num_ostreams = 2048;
33 if (setsockopt(fd, IPPROTO_SCTP, SCTP_INITMSG,
34 &init, (socklen_t)sizeof(struct sctp_initmsg)) < 0) {
35 perror("setsockopt");
36 }
37
38 memset((void *)&addr, 0, sizeof(struct sockaddr_in));
39 #ifdef HAVE_SIN_LEN
40 addr.sin_len = sizeof(struct sockaddr_in);
41 #endif
42 addr.sin_family = AF_INET;
43 addr.sin_port = htons(PORT);
44 addr.sin_addr.s_addr = inet_addr(ADDR);
45
46 if (connect(fd, (struct sockaddr *)&addr, sizeof(struct sockaddr_in)) < 0) {
47 perror("connect");
48 }
49
50 memset((void *)&status, 0, sizeof(struct sctp_status));
51 opt_len = (socklen_t)sizeof(struct sctp_status);
52 if (getsockopt(fd, IPPROTO_SCTP, SCTP_STATUS, &status, &opt_len) < 0) {
53 perror("getsockopt");
54 }
55
56 for (i = 0; i < NUMBER_OF_MESSAGES; i++) {
57 if (sctp_sendmsg(fd, (const void *)buffer, SIZE_OF_MESSAGE,
58 NULL, 0,
59 htonl(PPID), 0, i % status.sstat_outstrms,
60 0, 0) < 0) {
61 perror("send");
62 }
63 }
64
65 if (close(fd) < 0) {
66 perror("close");
67 }
68 return(0);
69 }

Fig. 8. Discard client using the one-to-one model.


