
Porting ZFS1) file system to
FreeBSD2)

Paweł Jakub Dawidek
<pjd@FreeBSD.org>

1) last word in file systems
2) last word in operating systems

mailto:pjd@FreeBSD.org

Do you plan to use ZFS in FreeBSD 7?

Have you already tried FreeBSD/ZFS?

Do you use FreeBSD/ZFS in production?

The beginning...
• ZFS released by SUN under

CDDL license
• available in Solaris / OpenSolaris

only
• ongoing Linux port for FUSE

framework (userland); started as
SoC project

• ongoing top secret port for
MacOS X

Features...

• ZFS has many very interesting
features, which makes it one of
the most wanted file systems

Features...

• dynamic stripping – use the entire
bandwidth available,

• RAID-Z (RAID-5 without
“write hole” (more like RAID-3
actually)),

• RAID-1,
• 128 bits (POSIX limits FS to 64 bits)...

(think about 65 bits)

Features...

• pooled storage
• no more volumes/partitions
• does for storage what VM did for memory

• copy-on-write model
• transactional operation

• always consistent on disk
• no fsck, no journaling

• intelligent synchronization
(resilvering)

• synchronize only valid data

Features...

• snapshots
• very cheap, because of COW model

• clones
• writtable snapshots

• snapshot rollback
• very handy “undo” operation

• end-to-end data integrity
• detects and corrects silent data corruption caused

by any defect in disk, cable, controller, driver
or firmware

Features...

• built-in compression
• lzjb, gzip

• self-healing
• return good data and fix corrupted data

• endian-independent
• always write in native endianess

• simplified administration
• per-filesystem encryption

• soon

Volume

FS

Volume

FS

Volume

FS

Storage Pool

ZFS ZFS ZFS

Traditional Volumes
● abstraction: virtual disk
● volume/partition for each FS
● grow/shrink by hand
● each FS has limited bandwidth
● storage is fragmented

ZFS Pooled Storage
● abstraction: malloc/free
● no partitions to manage
● grow/shrink automatically
● all bandwidth always available
● all storage in the pool is shared

FS/Volume model vs. ZFS

ZFS Self-Healing

xVM mirror

File System

1. Application issues
a read. Mirror reads
the first disk, which
has a corrupt block.
It can't tell...

Application

xVM mirror

File System

2. Volume manager
passes the bad block
to file system. If it's a
metadata block, the
system panics. If not...

Application

xVM mirror

File System

3. File system
returns bad data to
the application...

Application

Traditional mirroring

ZFS mirror

1. Application issues
a read. ZFS mirror
tries the first disk.
Checksum reveals
that the block is
corrupt on disk.

Application

ZFS mirror

2. ZFS tries the
second disk.
Checksum indicates
that the block is
good.

Application

ZFS mirror

3. ZFS returns
good data to the
application and
repairs the
damaged block.

Application

Self-Healing data in ZFS

Porting...
• very portable code (started to work

after 10 days (and nights) of porting)
• few ugly Solaris-specific details
• few ugly FreeBSD-specific

details (VFS, buffer cache)
• ZPL was hell (ZFS POSIX layer);

yes, this is the thing which VFS
talks to

Solaris compatibility layer

contrib/opensolaris/ - userland code taken from OpenSolaris
used by ZFS (ZFS control utilities, libraries, test tools)

compat/opensolaris/ - userland API compatibility layer
(Solaris-specific functions missing in FreeBSD)

cddl/ - Makefiles used to build userland libraries and utilities
sys/contrib/opensolaris/ - kernel code taken from OpenSolaris

used by ZFS
sys/compat/opensolaris/ - kernel API compatibility layer
sys/modules/zfs/ - Makefile for building ZFS kernel module

ZFS connection points in the kernel

ZFS

GEOM
(ZVOL)

VFS
(ZFS file systems)

/dev/zfs
(userland

communication)

GEOM
(VDEV)

How does it look exactly...

ZVOL/GEOM
providers only

VDEV_GEOM
consumers only

VDEV_FILE VDEV_DISK

GEOM

GEOM VFS

ZPL ZFS

many other layers

use mdconfig(8)

Snapshots

• contains @ in its name:
zfs list
NAME USED AVAIL REFER MOUNTPOINT
tank 50,4M 73,3G 50,3M /tank
tank@monday 0 - 50,3M -
tank@tuesday 0 - 50,3M -
tank/freebsd 24,5K 73,3G 24,5K /tank/freebsd
tank/freebsd@tuesday 0 - 24,5K -

• mounted on first access under
/mountpoint/.zfs/snapshot/<name>

• hard to NFS-export
• separate file systems have to be visible when its

parent is NFS-mounted

mailto:tank@monday
mailto:tank@tuesday
mailto:tank/freebsd@tuesday

NFS is easy

mountd /etc/exports /etc/zfs/exports
zfs set sharenfs=ro,maproot=0,network=192.168.0.0,mask=255.255.0.0 tank
cat /etc/zfs/exports
!!! DO NOT EDIT THIS FILE MANUALLY !!!

/tank -ro -maproot=0 -network=192.168.0.0 -mask=255.255.0.0
/tank/freebsd -ro -maproot=0 -network=192.168.0.0 -mask=255.255.0.0

• we translate options to exports(5) format
and SIGHUP mountd(8) daemon

Missing bits in FreeBSD needed by ZFS

Sleepable mutexes

• no sleeping while holding mutex(9)
• Solaris mutexes implemented

on top of sx(9) locks (performance
improvements by Attilio Rao)

• condvar(9) version that operates on
any locks, not only mutexes
(implemented by John Baldwin)

GFS (Generic Pseudo-Filesystem)

• allows to create “virtual” objects

(not stored on disk)
• in ZFS we have:
.zfs/
.zfs/snapshot
.zfs/snapshot/<name>/

VPTOFH

• translates vnode to a file handle
• VFS_VPTOFH(9) replaced with

VOP_VPTOFH(9) to support NFS
exporting of GFS vnodes

• its just better that way – confirmed
by Kirk McKusick

lseek(2) SEEK_{DATA,HOLE}

• SEEK_HOLE – returns the offset

of the next hole
• SEEK_DATA – returns the offset

of the next data
• helpful for backup software
• not ZFS-specific

Integration with jails

• ZFS nicely integrates with zones
on Solaris, so why not to use it
with FreeBSD's jails?

• pools can only be managed from
outside a jail

• zfs file systems can be managed
from within a jail

Integration with jails
main# zpool create tank mirror da0 da1
main# zfs create -o jailed=on tank/jail
main# jail hostname /jail/root 10.0.0.1 /bin/tcsh
main# zfs jail <id> tank/jail

jail# zfs create tank/jail/home
jail# zfs create tank/jail/home/pjd
jail# zfs snapshot tank/jail/home@today

Testing correctness

• ztest (libzpool)
• “a product is only as good as its test suite”
• runs most of the ZFS code in userland
• probably more abuse in 20 seconds that you'd

see in a lifetime
• fstest regression test suite

• 3438 tests in 184 files
• # prove -r /usr/src/tools/regression/fstest/tests
• tests: chflags(2), chmod(2), chown(2), link(2),

mkdir(2), mkfifo(2), open(2), rename(2),
rmdir(2), symlink(2), truncate(2), unlink(2)

Performance

Before showing the numbers...

• a lot has been done in this area
• the buffer cache bypass
• new sx(9) implementation
• namecache
• shared vnode locking
• mmap(2) fixes

Untaring src.tar four times one by one

0

20

40

60

80

100

120

140

160

180

200

220

UFS+SU

ZFS

T
im

e
in

 s
ec

on
ds

 (
le

ss
 is

 b
et

te
r)

Removing four src directories one by one

0

10

20

30

40

50

60

70

80

90

100

UFS+SU

ZFS

T
im

e
in

 s
ec

on
ds

 (
le

ss
 is

 b
et

te
r)

Untaring src.tar four times in parallel

0

25

50

75

100

125

150

175

200

225

250

275

300

325

350

UFS+SU

ZFS

T
im

e
in

 s
ec

on
ds

 (
le

ss
 is

 b
et

te
r)

Removing four src directories in parallel

0

20

40

60

80

100

120

140

160

180

200

UFS+SU

ZFS

T
im

e
in

 s
ec

on
ds

 (
le

ss
 is

 b
et

te
r)

5GB of sequential write

0

10

20

30

40

50

60

70

80

90

100

UFS+SU

ZFS

T
im

e
in

 s
ec

on
ds

 (
le

ss
 is

 b
et

te
r)

4 x 2GB of sequential writes in parallel

0

25

50

75

100

125

150

175

200

225

250

UFS+SU

ZFS

T
im

e
in

 s
ec

on
ds

 (
le

ss
 is

 b
et

te
r)

fsx -N 50000 (operating on mmap(2)ed files)

0

5

10

15

20

25

30

35

40

45

50

UFS+SU

ZFS

T
im

e
in

 s
ec

on
ds

 (
le

ss
 is

 b
et

te
r)

Changes after initial commit

• rc.d/zfs startup script (by des@)
• periodic zfs script (by des@)
• support for amd64
• jails support
• reports via devd(8)
• root on ZFS
• hostid
• disk identifiers
• use of FreeBSD's namecache

Changes after initial commit

• performance improvements;
based on help/work from ups@,
jhb@, kris@, Attilio Rao

• many bug fixes; based on feedback
from FreeBSD community

Changes in the pipeline

• extended attributes based on Solaris'
fsattr(5)s

• support for other architectures

Future changes

• POSIX.1e ACLs based on extended
attributes

• NFSv4-style ACLs
• iSCSI support for ZVOLs
• ZFS configuration at installation

time
• booting from ZFS?

Some examples...

