
Network stack virtualization for FreeBSD 7.0 slide 1 of 18

Network stack virtualization

for FreeBSD 7.0

Marko Zec
zec@fer.hr

University of Zagreb

mailto:zec@fer.hr

Network stack virtualization for FreeBSD 7.0 slide 2 of 18

Talk outline

● Network stack virtualization – what, why, and
how?

● Who needs this?
● Implementation: FreeBSD 4.x vs. 7.0
● Generalizing OS-level resource virtualization?

Network stack virtualization for FreeBSD 7.0 slide 3 of 18

Server virtualization: two sides of the spectrum

Applications

Operating System

Virtual Machine

Applications

Operating System

Virtual Machine

Virtual Machine Monitor

Physical Machine

Operating System

Physical Machine

Applications Applications

VM #1 VM #2

VM #1 VM #2

Private Resources
(network, CPU...)

Private Resources
(network, CPU...)

Strong isolation model

Independent OS instances

VM migration possible

Efficient resource utilization

No extra I/O overhead

Scaling

Network stack virtualization for FreeBSD 7.0 slide 4 of 18

Motivation: the idea

● Traditional OS architecture
– Support for only a single instance of network stack or

protocol family within the kernel

– Jails: first successful pseudo-virtualization framework

● Network stack virtualization (or cloning)
– Multiple independent network stack state instances

within a single kernel

– Existing networking code paths and algorithms
remain the same, but must be taught on how to
operate on virtualized symbols / state

Network stack virtualization for FreeBSD 7.0 slide 5 of 18

– Virtual hosting
● Think of extending FreeBSD jail with its own independent

network stack instance: multiple interfaces and IP
addresses, private routing table, IPFW / PF, dummynet,
BPF, raw sockets etc. etc.

● Anecdotal evidence: FreeBSD 4.11 based version in
production use by some US ISPs

– VPN provisioning and monitoring
● Support for overlapping IP addressing schemes

– Network simulation / emulation
● Each network stack instance == an independent virtual node

or router -> http://www.imunes.net/

Applications: who needs this?

http://www.imunes.net/

Network stack virtualization for FreeBSD 7.0 slide 6 of 18

The basic idea: replicate global networking state

Kernel space

User space

NIC
driver

Virtual image #0

U
se

r
p

ro
ce

ss

NIC
handle

U
se

r
p

ro
ce

s
s

S
o

ck
et

S
o

ck
e

t

TCP UDP raw ...

IP ...

features (ipfw...) ...

S
o

c
ke

t

Virtual image #1

U
se

r
p

ro
ce

ss

Virtual NIC
handle

U
se

r
p

ro
ce

s
s

TCP UDP raw ...

IP ...

features (ipfw...) ...

S
o

ck
et

Virtual image #n

U
se

r
p

ro
ce

ss
S

o
ck

et

TCP UDP raw ...

IP ...

features (ipfw...) ...

NIC
driver

NIC
handle

bridging

Network stack virtualization for FreeBSD 7.0 slide 7 of 18

Implementation concepts: long time ago...

● Patches against FreeBSD 4.7 .. 4.11 kernels
– Obsolete platform today

● struct vnet

– One huge structure / container; each network stack
instance operates on its private copy

– Contains ifnet lists, IPv4 / IPv6 / firewall state etc.

● Sockets
– Each socket is assigned to a network stack instance

during creation time

– Cannot move / change until socket closed

Network stack virtualization for FreeBSD 7.0 slide 8 of 18

Implementation concepts: how it was done (cont'd)

● Network interfaces
– Each interface can belong to only one network stack

instance at a time

– Demultiplexing of incoming traffic based on on the
new if_vnet tag in struct ifnet

– Network communication between stack instances
only through explicit links: netgraph

● User processes
– Bound to only one stack at a time, can reassociate

– Jail–style separation (reused existing jail code)

Network stack virtualization for FreeBSD 7.0 slide 9 of 18

Implementation concepts: API / ABI compatibility

● Userland to kernel: both API and ABI 100%
preserved
– Support for accessing the virtualized symbols added

to the kldsym interface (needed for netstat,
systat, top and similar utilities)

– Similar extensions added to the sysctl interface

● Within the kernel: API is NOT preserved
– Many networking functions extended with an

additional argument: struct vnet *

– Generally, no changes at device driver layer

Network stack virtualization for FreeBSD 7.0 slide 10 of 18

(Re)implementation: 7.0

● Goals:
● Conditional compilation
● Better support for kernel loadable modules
● Scope of changes is huge: reduce code churn
● SMP must work
● Otherwise, no chances for including the changes

into main FreeBSD tree

Network stack virtualization for FreeBSD 7.0 slide 11 of 18

Replicate global networking state: how?

ucred

vnet_net

vnet_inet

vnet_inet6

vnet_ipfw
vnet_netgraph

...

procthread

socket

ifnet

inpcbinfo

tcpcb

syncache_head

(more to come)

curvnet

parent

ifnet
rt_tables[]
...

vimage

vi_le

vnet

vprocg

vcpu

...

vimage

vi_le

vnet

vprocg

vcpu

...
vnet

vnet_le

mod_data[]

ifccnt

sockcnt

vnet

vnet_le

mod_data[]

ifccnt

sockcnt

vnet

vnet_le

mod_data[]

ifccnt

sockcnt

parent

ipforwardng
tcpcb
...

Network stack virtualization for FreeBSD 7.0 slide 12 of 18

vnet modules: registration / deregistration

static struct vnet_symmap vnet_net_symmap[] = {
 VNET_SYMMAP(net, ifnet),
 VNET_SYMMAP(net, rt_tables),
 ...
 VNET_SYMMAP_END
};

static struct vnet_modinfo vnet_net_modinfo = {
 .id = VNET_MOD_NET,
 .flags = VNET_MFLAG_ORDER_1ST,
 .name = "net",
 .symmap = vnet_net_symmap,
 .i_attach = vnet_net_iattach,
 .i_detach = vnet_net_idetach
};

if_init(void *dummy __unused)
{
#ifdef VIMAGE
 vnet_mod_register(&vnet_net_modinfo);
#else
 vnet_net_iattach();
#endif
 ...

Network stack virtualization for FreeBSD 7.0 slide 13 of 18

Conditional compilation: option VIMAGE

● Dereference virtualized symbols: how?
– Use macros for this. Example:

● if_addrhead becomes V_if_addrhead

– Standard kernel:
● V_if_addrhead expands back to if_addrhead

– Virtualized kernel:
● V_if_addrhead expands to
vnet_net->_if_addrhead

– Sysctl and kldsym interfaces extended to support
access to virtualized symbols

Network stack virtualization for FreeBSD 7.0 slide 14 of 18

Reducing code churn

● Implicitly pass the vnet context to operate on:

– Thread-local curvnet variable

void if_attach(struct ifnet *ifp)

{

INIT_VNET_NET(curvnet);

...

}

INIT_VNET_NET(x) (x is a struct vnet *) expands to

struct vnet_net *vnet_net = x->mod_data[VNET_MOD_NET];

Network stack virtualization for FreeBSD 7.0 slide 15 of 18

Performance: loopback TCP throughput

Network stack virtualization for FreeBSD 7.0 slide 16 of 18

Generalizing OS-level virtualization

● Management concepts / API
– Top-level resource container struct vimage

– Contains freely combinable subsystem-specific state
● vnet, vcpu, vprocg, vfs...

– Single process with sockets in multiple stacks
● Extend socket interface -> multi-table routing daemons

– Hierarchy of vimages – follow UNIX process model?

– Permissions, restrictions, inheritance...
– How to best integrate those new concepts / features

with the rest of the system?

Network stack virtualization for FreeBSD 7.0 slide 17 of 18

Project status

– Supported by NLNet and FreeBSD foundation
● Started in August 2006, should have already finished...

– In sync with -CURRENT: p4 projects/vimage
● Snap-in replacement kernel – no userspace changes!
● http://imunes.tel.fer.hr/virtnet/ : CVSup

– Reasonably stable already
● Lots to be done: locking, management API & housekeeping

– Most important networking subsystems virtualized:
● IPv4, IPv6, NFS, IPFW / PF firewalls, BPF, raw / routing

sockets...

– Outside the tree until 7.0-RELEASE, merging in 8.0?

http://imunes.tel.fer.hr/virtnet/

Network stack virtualization for FreeBSD 7.0 slide 18 of 18

To conclude...

– Do we need all this?
● the community has to provide that answer.

– If yes, what's next to virtualize?
● CPU time (scheduler)
● Filesystems (ZFS?) / disk I/O bandwidth
● Memory
● ...

– We need a generalized OS-level virtualization model

http://imunes.tel.fer.hr/virtnet/

http://imunes.tel.fer.hr/virtnet/

