
Sensors and Management for Server Appliances

From stock FreeBSD to enterprise ready

Joshua Neal

NetApp, Inc.
495 E. Java Dr
Sunnyvale, CA

joshuan@netapp.com

BSDCan 2009



The appliance market

What is an appliance?

Generally describes a highly integrated sofware and hardware
solution.

Ranges from low-end embedded devices to high-end server
appliances.

Low-end platforms tend to use highly integrated, custom
hardware.

High-end platforms range from totally commercial-off-the-shelf
(COTS) to fully purpose-built hardware.

The high-end hardware may overlap significantly with the server
market, leveraging the same technologies.

This presentation focuses on the high-end segment, with a bias
toward platforms based on PC architecture.

Joshua Neal Sensors and Management for Server Appliances



Out-of-box experience (OOBE)

Enterprise customers buying server appliances want systems that
”just work.”

The real world conspires against this goal:

Environmental issues: temperature, power

Component failures: mechanical, electrical

Appliance must provide:

Hardware sensors that can detect problems

Software to perform sensor monitoring

A sensible policy

UI functionality to access sensors

COTS hardware is likely to provide the first three, but any platform
customization generally requires additional effort to support.

Joshua Neal Sensors and Management for Server Appliances



The challenge is growing

Inside the box:

Increasing system complexity

Increasing number of sensor interfaces and types

More field replaceable units (FRUs)

Pushing the envelope of cooling and power

And outside the box:

Higher power density

Trend toward warmer data center temperatures

Trend away from ”clean-room” data centers

Joshua Neal Sensors and Management for Server Appliances



Default behaviors

The default behavior may be less than ideal:

No response to event

Sudden death

Dreaded reboot loop

Logging only

Custom policy not implemented

Preferred:

Alerting

Fault reporting (LED, LCD)

Identify and perform corrective action

Clean shutdown and/or graceful failover

Predicting failures

Joshua Neal Sensors and Management for Server Appliances



Beyond simple reporting

What did we need to add?

Required ability to interpret sensor values and respond
appropriately.

Required UI for monitoring sensors, adjusting policy (where
allowed).

Required unit test hooks, ability to simulate sensors and actions for
testing.

Traditionally each sensor interface has its own UI, test hooks, and
policy mechanism.

Much duplicated effort, dissimilar levels of functionality.

What if we defined a common abstraction for sensors and then
implemented some kind of generic, unified policy engine?

Joshua Neal Sensors and Management for Server Appliances



Common abstraction for sensors

What is a sensor?

Easiest to define are traditional physical sensors:

Correspond directly to some physical measured quantity

Analog, measuring a range of values (e.g. temperature)

However, may not always report value (e.g. uninitialized,
failed, or busy)

Not necessarily limited to those; other possibilities include:

Discrete sensors, returning one of a set of values (e.g.
present/not present)

May be measuring a software state or quantity

May be output of a complex failure function

Joshua Neal Sensors and Management for Server Appliances



Sensor metadata

Sensor interface may have associated metadata:

Sensor name

Sensor units

Conversion formula

Entity/FRU association

Sensor relationships (e.g. presence, voltage)

Thresholds

Sometimes discoverable via interface-specific protocol.

If not, platform-specific configuration data is needed.

Joshua Neal Sensors and Management for Server Appliances



Sensor thresholds

It is often useful to define a set of ranges that are used to interpret
sensor values, commonly defined by a set of thesholds.

Popular thresholds:

High/low extreme

High/low critical

High/low warning

Hysteresis helps prevent oscillations between states.

Joshua Neal Sensors and Management for Server Appliances



Sensor access methods

Whether sensors are polled versus interrupt driven may vary by
device.

Considerations:

Sensors are generally not performance critical.

Sensors are generally not the primary focus of the appliance.

Polling too frequently may reduce system performance.

Polling too infrequently may miss important events.

Interrupts may allow the lowest overhead, while still
preventing missed events.

Joshua Neal Sensors and Management for Server Appliances



Sensor interfaces: I2C R©

I2Cis a two-wire electrical interface standard introduced by
Phillips R©.

Most popular sensor interface (vs. SPI, 1-Wire R©, etc.)

Slow speeds (100kHz, 400kHz)

Low cost to implement, shared two-wire bus and inexpensive
devices

May be driven (bit-banged) by GPIO (with increased CPU
overhead)

Reliability issues (limited error detection, tendency to get
stuck)

Not designed to be discoverable (heuristic probing is
sometimes possible)

Joshua Neal Sensors and Management for Server Appliances



Sensor interfaces: I2C R© protocol

Two data lines, devices either drive bus low or leave alone
(external pull-ups).

SCL: clock

SDA: data

Devices take on roles of master/slave. Master always initiates bus
tranaction, and typically drives the clock line.

Slave devices are addressed by 7-bit slave address, usually limited
to a small set of addresses per device type.

Multiple busses or multiplexers may be needed to avoid address
collisions.

Joshua Neal Sensors and Management for Server Appliances



Sensor interfaces: SMBus R©

SMBus is a subset of I2Cintroduced by Intel R©.

Used almost interchangably with I2C R© when describing two-wire
busses/devices.

Additonal SMBus functionality:

(Optional) Packet Error Checking (PEC) using CRC-8

Additional (sharable) interrupt signal line SMBALERT#

Optional mechanism for auto-discovering devices (ARP) (v2.0)

Joshua Neal Sensors and Management for Server Appliances



Sensor interfaces: I2C/SMBus R© spotting guide

Temperature (LM75 and friends)

Voltage monitor

Miscellanious GPIO

Smart batteries

Register/debug access

DIMM SPD EEPROMs (incl. DDR3 temp sensors)

Add-in cards (PCI/PCI-X as well as PCIe)

Optical transceiver modules (e.g. SFP modules)

IPMI SSIF interface

Joshua Neal Sensors and Management for Server Appliances



Sensor interfaces: IPMI

Intelligent Platform Management Interface (IPMI)

Standardized interface to a management subsystem
(microcontroller)

Usually a Baseboard Management Controller (BMC) located
on or attached to the system board via a proprietary connector

Most common in server hardware, where it helps to offload
responsibilities from main CPU

May have dedicated or shared console/network interfaces

IPMI 2.0 spec:
http://www.intel.com/design/servers/ipmi/spec.htm

Joshua Neal Sensors and Management for Server Appliances



Sensor interfaces: IPMI features

Key IPMI features include:

Unified protocol for accessing sensors

Sensor Data Record (SDR) repository for sensor metadata

SDR includes sensor-to-entity (FRU) mapping

Proivdes persistent System Event Log (SEL) for event logging

Well-defined host interfaces (KCS, SMIC, SSIF, BT)

Watchdog functionality and NMI generation

Chassis power control

Provides mechanisms and protocols for remote access to BMC

Serial-over-LAN (SOL) protocol

Joshua Neal Sensors and Management for Server Appliances



Sensor interfaces: ACPI

Advanced Configuration and Power Interface (ACPI)

Provides interface layer between OS and hardware sensors.

Complex standard defining virtual machine interpreter for
hardware control.

Defines a common abstraction for common power
management and system control functions. Sensors and
metadata can be discovered via this API.

Joshua Neal Sensors and Management for Server Appliances



Sensor interfaces: ACPI (continued)

The ACPI interface can support a number of sensor types,
including:

Power managment

Thermal sensors

Battery monitoring

Fan control

Extra buttons

Ambient light

Embedded Controller (EC) interface

Most useful for COTS systems, especially laptops that must run
off-the-shelf OS.

Appliance vendors may choose to save the cost of implementing
ACPI and implement direct control in the application SW instead.

Joshua Neal Sensors and Management for Server Appliances



Sensor interfaces: SES

SCSI Enclosure Services (SES)

Attached versus standalone:

Attached uses functionality built into a SCSI target to tunnel
commands to logic on the SCSI backplane

Standalone provides dedicated target endpoint found on
SCSI/SAS backplane, or as part of a SAS expander solution.

Used for management of external shelves; may also be used in
appliances with an internal backplane.

Responsibilities may include control of storage status LEDs and fan
and power monitoring for backplane, or even entire chassis.

Joshua Neal Sensors and Management for Server Appliances



Sensor interfaces: SES model

Each SES enclosure is reported as one or more subenclosures.
Each subenclosure may have a set of elements.

The set of predefined element types includes:

Power supply

Cooling element (fan)

Temperature

Voltage sensor

Current sensor

Audible alarm

Joshua Neal Sensors and Management for Server Appliances



Sensor interfaces: SES protocol

The SES protocol uses the SCSI SEND DIAGNOSTIC and
RECEIVE DIAGNOSTIC RESULTS commands to talk to the
enclosure’s management processor.

Each of these commands operates on a diagnostic page, which is
specified by its 1-byte page code.

Each element type defines its own encoding for element control
and element status, containing common fields as well as fields
unique to that particular element type.

Joshua Neal Sensors and Management for Server Appliances



Sensor interfaces: device-specific

Devices with integrated sensors, accessible via device-specific
interface.

Examples:

CPU/chipset thermal sensors

Hard drives (via S.M.A.R.T.)

Add-in cards

USB peripherals

Each device tends to require its own specialized access method for
querying sensor values and metdata (if any).

Joshua Neal Sensors and Management for Server Appliances



Existing applications

I2C/SMBus R©

iic(4), smbus(4)

smbmsg

mbmon, healthd

bsdhwmon (cancelled)

IPMI

ipmi(4) (KCS, SMIC, SSIF)

ipmitool

freeipmi

Joshua Neal Sensors and Management for Server Appliances



Existing applications (continued)

SES

ses(4)

/usr/share/examples/ses

ACPI

acpi(4)

sysctl (e.g. hw.acpi.thermal.*)

Device-specific

CPU: coretemp(4), amdtemp(4) - sysctl
dev.cpu.*.temperature

HDD: smartmontools (smartctl -A)

Joshua Neal Sensors and Management for Server Appliances



A new, unified sensor architecture

Goal: Implement a reusable policy engine for multiple hardware
platforms.

Some sensor abstraction was needed to support various types of
sensors.

Significant effort has gone into implementing a unified kernel
sensor framework for FreeBSD (e.g. Constantine A. Murenin’s port
of OpenBSD sensor framework).

However, for the most complex protcols, IPMI and SES, most of
the protocol can (and should be) implemented in userspace. The
kernel component can be limited to a lightweight, generic transport
with only a few supported operations.

An application library is a better place to provide a unified sensor
interface.

Joshua Neal Sensors and Management for Server Appliances



A new, unified sensor architecture

Joshua Neal Sensors and Management for Server Appliances



kqueue

Needed to provide an event delivery mechanism to userspace.

Kqueue seems to fit the bill nicely:

The application can wait on both sensor events and socket
(command interface) events using a single API.

Kqueue allows passing additional information along with event
back to the userspace, may be used to avoid additional syscall.

Implemented kqueue handlers for sensor devices that need to send
events to the userspace.

Joshua Neal Sensors and Management for Server Appliances



kqueue(2), sys/event.h

struct kevent {
uintptr_t ident; /* identifier for this event */
short filter; /* filter for event */
u_short flags;
u_int fflags;
intptr_t data;
void *udata; /* opaque user data identifier */

};

#define EV_ADD 0x0001 /* add event to kq */
#define EV_DELETE 0x0002 /* delete event from kq */
#define EV_ENABLE 0x0004 /* enable event */
#define EV_DISABLE 0x0008 /* disable event (not reported) */

#define EV_ONESHOT 0x0010 /* only report one occurrence */
#define EV_CLEAR 0x0020 /* clear ev state after reporting */

Joshua Neal Sensors and Management for Server Appliances



kqueue(2) (continued)

int
kqueue(void);

int
kevent(int kq,

const struct kevent *changelist, int nchanges,
struct kevent *eventlist, int nevents,
const struct timespec *timeout);

Joshua Neal Sensors and Management for Server Appliances



kqueue limitations

Only one integer value passed back to userspace.

Not really a queue, multiple events coalesced into one event.

Preferrable to use level-triggered mechanism.

Idea: Implement a sensor event queue in each driver, which tracks
events and any device-specific event information

kqueue mechanism used to report level-triggered ”sensor event
queue contains events”

Sensor event queue read via ioctl()

Joshua Neal Sensors and Management for Server Appliances



Future directions

Since kqueue is designed to handle many thousand connections
efficiently, event per sensor (or multiple per sensor) may be
reasonable.

Add kernel layer to attach drivers to, to minimize effort required to
export sensors.

Better support for hotplug notifications.

Something completely different?

Joshua Neal Sensors and Management for Server Appliances


