
Journaling FFS with WAPBL
Jörg Sonnenberger
joerg@NetBSD.org

Overview

A short introduction to FFS
WAPBL: Overview
WAPBL: In-depth
Performance
Open issues
Questions

A short introduction to FFS

Superblock
Inodes
Directories
Cylinder groups
Consistency requirements

The FFS superblock

Description of the filesystem
Block size, fragment size, number of blocks, etc
Time of last mount and if unmounted cleanly
Summary of filesystem content
Stored redundantly to protect against bad blocks etc
Different versions, some fields added, some killed
dumpfs(8) tells the version (FFSv2 for WAPBL!)

Inodes

The file content, not the file name
128 Bytes for FFSv1, 256 Bytes for FFSv2
Link count, time stamps, size, flags, ownership, ...
References to the first 12 blocks and indirect blocks for the rest
Last block can be partially allocated: fragments

Journaling FFS with WAPBL http://www.netbsd.org/gallery/presentations/joerg/...

1 of 7



Not all blocks have to be allocated: holes
Inodes never end with holes
Extended Attribute block for FFSv2

Directories

Records of inode number, record len, file type, name
Padded to block boundaries
"." and ".." as special entries

Cylinder groups

Distribute files over disk, reducing fragmentation
Contain fixed size inode lists
Contain free space bitmaps
Contain superblock copy

Consistency requirements

Superblocks have to stay in sync
Cylinder groups need consistent summaries and bitmaps
Inodes must be freed once link count reaches 0
Inodes must have indirect blocks written before writting the pointer
Inodes must be initialized before creating directory entries
Inode reference count must be modified on link(2) and unlink(2)

Practical example: mkdir(2)

Allocate free inode
Allocate block by marking it as used in the bitmap
Write directory template with "." and ".." entry
Increment reference count of parent directory
Write inode to disk with allocated block referenced and ref count 2
Write directory entry to parent directory
Update statistics

WAPBL: Goals

Crash recovery without fsck
Improve performance by reducing synchronisation
Potentially reduce number of disk seeks by allowing aggregation

Journaling FFS with WAPBL http://www.netbsd.org/gallery/presentations/joerg/...

2 of 7



Simpler and less error prone than Soft Updates
Trivial to use: mount -o log ...

WAPBL: Components

The generic WAPBL backend
Integration into FFS

Overview: The WAPBL backend

Journal writing and replaying
Journal records:

Block entry
Revocation of earlier journaled blocks
List of unreferenced allocated inodes

bwrite / bdwrite registers buffer and defer writing

In-depth: Journal layout

Circular buffer of records
Header block at the start and the end of the log area
Headers are written alternatively with generation counter
Newer header determines newest valid and oldest active record
Explicit disk synchronistation after all writes

In-depth: Journal layout (II)

Block entries: to be written to given location after crash
Block revocation: when changing from meta data to data block
Unreferenced allocated inode:

During initialisation: mode = 0
Unlinked, but still open: mode != 0

In-depth: Journal replay

Process all journal entries in order:
Block entries: add to hash table
Revocation entries: remove entries from hash table again
Unreferenced inodes: keep last entry

If not mounting read-only, write all blocks back to disk
Call filesystem backend for unreferenced inodes

Journaling FFS with WAPBL http://www.netbsd.org/gallery/presentations/joerg/...

3 of 7



Shared code between kernel and fsck

Overview: FFS integration

Journal location in superblock
Registration of inode allocation and freeing
Registration after freeing meta data blocks
Annotate transaction borders
Allocation of journal
Journal replay on mount

Journal location

End of partition:
Size limited only by disk space
Disk address, size and block size stored in superblock

In-filesystem:
Limited to size of cylinder group
Address, size, block size and inode number in superblock

On mount, journal is created on-demand:
At the end, if enough free space (1MB journal per 1GB size)
Inside the filesystem (up to 64MB, at least 1MB)

In-depth: mkdir(2)

-> sys_mkdir
-> ufs_mkdir
Allocate and register new inode:
ffs_valloc: UFS_WAPBL_BEGIN + ffs_nodealloccg + UFS_WAPBL_END
UFS_WAPBL_BEGIN
UFS_UPDATE -> unregister inode again
(write template)
UFS_WAPBL_END

In-depth: mkdir(2) journal record

First transaction:
Cylinder group updates (Block entry)
Inode update (Block entry)
Unreferenced inode list

Second transaction:
Inode update (Block entry)

Journaling FFS with WAPBL http://www.netbsd.org/gallery/presentations/joerg/...

4 of 7



Inode update for parent (Block entry)
Directory content (Block entry)
Unreferenced inode list

In-depth: ffs_write

Can be called from inside the filesystem code or from
sys_write/vn_write
UFS_WAPBL_BEGIN if not already inside a transaction
-> VOP_PUTPAGES
UFS_WAPBL_END if started earlier

Performance: test system

HP ProLiant ML110
Xeon 3040 @1.86GHz
2GB memory
Test on dedicated SATA disk, write caching enabled
OpenSuSE 11.1 and NetBSD 5.0

Performance (I): 10x
pkgsrc.tar.bz2

Journaling FFS with WAPBL http://www.netbsd.org/gallery/presentations/joerg/...

5 of 7



Performance (II): build.sh release

Journaling FFS with WAPBL http://www.netbsd.org/gallery/presentations/joerg/...

6 of 7



Open issues

No checksum of journal entries
Too much data flushing
Too much serialisation of writes
Holding the journal locked over UBC operations
No data ordering
Support for external journal

Q&A

Questions?

Journaling FFS with WAPBL http://www.netbsd.org/gallery/presentations/joerg/...

7 of 7


