
Kernel Development in Userspace - The Rump Approach

Antti Kantee
Helsinki University of Technology

pooka@cs.hut.fi

Abstract

In this paper we explore the use of the NetBSD Runnable
Userspace Meta Program (rump) framework for kernel
development. Rump enables running kernel components
in userspace without code modification. Examples in-
clude file systems, the networking stack, and the kernel
entry points for a large number of system calls. This
makes it possible to develop, debug and test kernel code
as a normal userspace application with all the associated
benefits over work done directly in the kernel.

This paper describes how, why and when to use rump
for kernel development. It does not delve into the secrets
of the implementation of the framework or evaluate the
framework in any other sense apart from its usefulness
in kernel development. The contribution of this paper is
to give useful information and examples on how to make
kernel development a less daunting task.

1 Introduction

Apart from device drivers and low level machine depen-
dent code, kernel code does not generally care if it runs
in the privileged CPU mode or not. The only constraint
keeping kernel code from running in userspace is the fact
that kernel source modules depend on other kernel mod-
ules. A small fraction of the kernel source modules de-
pend on code which does require the privileged mode.
This means that running the standard kernel binary in
userspace is not possible. Furthermore, a strategy of
picking single source modules from the kernel and at-
tempting to include them in userspace programs is likely
to run into missing dependencies.

The Runnable Userspace Meta Program, or rump,
framework provides support for running code from the
kernel in userspace applications. This is done by group-
ing existing kernel source modules into components ac-
cording to their functionality and dependencies. These
components are then provided as userspace libraries.

Where the dependencies for desired source code involve
kernel code which requires the privileged CPU mode, a
reimplementation suitable for userspace is provided.

The term ”rump” is also used to describe a userlevel
program which uses the rump framework to run kernel
code in userspace. Additionally, we use the term ”rump
kernel” to describe the kernel source code and the depen-
dencies reimplemented for userspace.

Doing kernel development in userspace has numerous
advantages. The main benefit is the light speed testing
cycle: bootstrapping the rump kernel takes just microsec-
onds, so testing changes is typically extremely fast. Ad-
ditionally, a kernel panic always means an application
core dump on the file system, so examining the state after
a crash is straightforward. Unmodified userspace tools
such as gdb, gprof and Valgrind may be used on a rump
kernel. Furthermore, the setup and maintenance of a full
OS installation is not required.

This paper represents current best practices in
NetBSD-current as of May 2009. Some solutions pre-
sented are not optimal and are merely a way for rumps
to work around system or tool problems. The solu-
tions are also not foolproof recipes for problems in ker-
nel development. Nevertheless, the techniques presented
have proved useful in attacking and defeating many real
NetBSD kernel bugs during the past 18 months.

The remainder of this paper is organized as follows.
In Section 1.1 we go over the typical approaches to ker-
nel debugging. Section 2 introduces rump from a practi-
cal perspective and Section 3 discusses the programming
interfaces. Section 4 explains how to use rump for de-
bugging the kernel and Section 5 demonstrates how to
handle kernel regression testing. Finally, Section 6 con-
cludes and lists pointers to further resources.

1.1 Problems with traditional methods
There are numerous traditional methods for doing kernel
development.

1. direct approach[8]. The most straightforward ap-
proach is to do development directly in the kernel on
real hardware. Commonly two machines are used:
one for code development and one for testing. After
a crash two reboots may be required: one for up-
loading a fix attempt and a second one for re-testing.
Booting from the network or kernel modules may be
used to reduce the number of reboots. Typically, a
serial console and gdb are used for debugging. Al-
ternatively, Ethernet or FireWire may be used for
remote memory access debugging1. Another option
is to examine a post-reboot kernel coredump in the
debugger. Notably, in some cases of hardware de-
vice driver development the direct approach may be
the only available approach.

The drawbacks of using the same machine for de-
velopment and testing are obvious: development
will stall whenever rebooting. Two machines re-
quire two separate installations. Especially when
doing casual development, the cost of updating the
test installation before testing may be high. Fur-
thermore, this model does not isolate the component
under development. This can, to give a random al-
though fairly unlikely example, cause networking
stack development to overwrite file system mem-
ory and in turn corrupt the root file system. Finally,
in case kernel debugging has to be done when the
product is already deployed on the field, setting up
a development machine might not be feasible.

2. emulator/vm approach. A full operating system is
run, but instead of using real hardware, an emula-
tor or virtual machine is used. The popular choices
available on NetBSD are qemu [4] and Xen [3]. A
full usermode OS also falls into this category, al-
though NetBSD does not currently support one.

The drawbacks listed for the direct approach apply
here also. Apart from the fact that a second unit
of hardware is not required and the development
host is untouched by crashes during testing, this op-
tion may be worse: without KVM support, qemu is
fairly slow and the setup cost of Xen is quite high
if the development machine has not been installed
with Xen in mind and a Xen Dom0 is not available.

3. userland approach. The component under devel-
opment is isolated to a self-contained userspace pro-
gram. It is written against a pseudo-kernel interface
and e.g. locking might simply be defined away with
#ifdef when running in userspace.

1The author has only used a serial console for remote kernel de-
bugging of NetBSD and cannot comment on the status of Ethernet or
FireWire debugging.

NetBSD KernelTCP/IP
driver

NIC
driver

UFS
driver

disk
driver

system call layer

network
process

sendmsg()

rump
network
process

librump
write()

storage
process

rump
storage
process

librump
unlink()read()/write()

sendmsg() unlink()

hard
drive

network

Figure 1: rump architecture. The kernel components
are run in userspace. For comparison, regular processes
are depicted on the outer edge and the rump versions in
the middle.

The main problem with this approach is that kernel
environment emulation is often very lazy. For ex-
ample, if locking is not properly dealt with in the de-
velopment phase, it will have to be sorted out when
the code is moved into the kernel. Keeping the nec-
essary pseudo-kernel emulation alive after moving
it to the kernel may also prove challenging; without
constant use the #ifdef portion of the code has a
tendency to bitrot. Finally, if this technique is used
in multiple projects, effort duplication may result.

2 Runnable Userspace Meta Programs

As mentioned in the introduction, rumps enable running
kernel code components in userspace without any code
modification. To function, the rump kernel must still
communicate with the host OS kernel. For example, file
systems must still be able to access the block device used
for backing storage. However, the communication pro-
tocol with the kernel is very low level. Continuing the
file system example, the protocol consists of reading and
writing device blocks. The general architecture of rumps
is illustrated in Figure 1.

In a way, rump is similar to the userland approach (3).
However, a more complete emulation of kernel seman-
tics, including locking and synchronization, is provided.
Additionally, the implementation is centralized, so main-
tenance penalty has to be paid only once. Finally, rump
provides a way to reuse kernel code in applications, but
going into details on it is beyond the scope of this paper.

2.1 Available components
Next, we introduce the current sets of available rump
components.

Base components: These components provide the base
functionality for rump. They must be included in all
rumps regardless of function.

• rump: provides base kernel functionality such as
libkern, memory allocation and file descriptor man-
agement.

• rumpuser: used by the rump kernel code to access
resources available in userspace, e.g. open a file,
read from a socket or create a thread via libpthread.
This is the only part of a rump kernel not compiled
with -D_KERNEL. In a very loose sense, rumpuser
is the machine dependent portion of the kernel.

Networking components: These components provide
support for networking in a rump. There are essentially
two choices [7]: an emulated TCP/IP stack and full net-
working support. The emulated stack uses the configura-
tion of the host machine and can be applied in situations
where the development interest is not directly in net-
working, e.g. when debugging NFS. The full networking
stack requires configuration of interfaces and addresses,
but is the only choice when work is directly related to
networking, e.g. when tweaking the TCP subroutines.

• rumpnet: basic networking support. This compo-
nent provides for example mbufs and sockets and
must be included in all rumps using networking.

• rumpnet sockin: emulates the TCP/IP networking
stack using socket system calls. This component is
mutually exclusive with all the components intro-
duced next [7].

• rumpnet net: interface and routing support.
• rumpnet inet: IP support, includes the UDP and

TCP protocols.
• rumpnet local: UNIX domain protocol support.
• rumpnet virtif: virtual networking interface, com-

municates with the world using a tap device node.
• rumpnet shmif: virtual networking interface, com-

municates with other rumps using shared memory.

File system components: These components provide
support for kernel file systems:

• rumpvfs: virtual file system support and file sys-
tem subroutines. Additional functionality includes,
for convenience, a block device driver because it is
required by most file systems (although not all, e.g.
nfs). This component must be included in all file
system rumps.

• rumpfs cd9660: ISO9660
• rumpfs efs: SGI’s Extent File System
• rumpfs ext2fs: ext2
• rumpfs ffs: Berkeley FFS

struct modinfo **mi;
void *handle;
int rv;

handle = dlopen("librumpfs_tmpfs.so", RTLD_GLOBAL);
mi = dlsym(handle, "__start_link_set_modules");
rv = rump_module_init(*mi, NULL);

Figure 2: Example of dynamically loading a compo-
nent in rump (error handling omitted to save space).

• rumpfs hfs: Apple HFS+
• rumpfs lfs: Berkeley LFS
• rumpfs msdos: FAT
• rumpfs nfs: NFS client
• rumpfs nfsserver: NFS server2

• rumpfs ntfs: Microsoft NTFS
• rumpfs syspuffs: puffs in userspace
• rumpfs sysvbfs: SysV Boot File System
• rumpfs tmpfs: tmpfs memory file system
• rumpfs udf: Universal Disk Format

2.2 Including optional components
Components may be included in two different ways:
linking them in at compile time or dynamically loading
them at runtime. In both cases the dependencies much be
available. For dynamic loading the dependencies must be
loaded before the components that depend on them.

Compile time linking is done by supplying the
linker with the necessary set of -lcomponents, e.g.
-lrumpfs_tmpfs -lrumpvfs.

Dynamic loading uses functionality provided by ker-
nel modules and is limited to components which are cur-
rently available in NetBSD as modules. Therefore, only
file systems are currently loadable dynamically. Dy-
namic loading is a two stage process which consists of
first loading and linking the shared library and then in-
forming the rump kernel about its existence. Loading
is performed by calling dlopen() on the library. The
module information of the component is then located
and passed to rump_module_init(). An example
of this is presented in Figure 2.

The link set approach used by the kernel causes addi-
tional trouble in userspace. A link set is a mechanism
which can be used by source modules to add an entry to
a specific section in the compiled binary object. These
sections are then coalesced by the static kernel linker
into a single section which can be traversed at runtime

2A fully functional rump kernel NFS server depends on additional
patches to mountd. These are not currently in the NetBSD CVS repos-
itory. The short version is that the exports list must be loaded to the
rump kernel instead of the real kernel.

by the kernel. However, the scheme is incompatible with
shared libraries3 due to the fact that the dynamic linker
does not create storage, only resolves symbols; only the
first linker command line component where a link set en-
try is provided will be stored in a link set. The effec-
tive result is that only the first file system or network-
ing component from the linker command line will be
valid in a rump kernel. For example, a rump linked with
”-lrumpfs_ffs -lrumpfs_efs” will have support
only for FFS. There has been discussion to work around
the problem in the dynamic linker, but so far the only
option is to load subsequent components dynamically, as
described in the previous paragraph.

2.3 Compiling a new rump kernel

Compiling a new version of the rump kernel means sim-
ply compiling the necessary libraries and installing them
for consumers. For example, to compile the standard
rump components, make dependall in src/sys/rump
followed by make install should be used. Stan-
dard make syntax is valid and adding DBG=-g to the
make command line will compile the rump kernel with
debugging symbols. The author frequently uses also
MKSTATICLIB=no and MKPROFILE=no in the make-
file configuration to speed up compilation when doing
testing and development.

Notably, the above differs slightly from a normal user-
land build. In the base system build the rump core li-
braries are built from reachover makefiles in src/lib and
shared libraries are linked to their dependencies already
at build time. When building from src/sys/rump it is not
so. In practice this means that while in a regularly built
system the whole set of component dependencies (e.g.
-lrump -lrumpuser -lpthread) does not have
to specified when linking a dynamic rump, for a devel-
opment build from src/sys/rump they must be given. It is
good practice to do this always anyway because of static
libraries.

2.4 Defining additional components

Additional rump kernel components can be defined by
creating makefiles which include the appropriate source
modules. All of the common definitions for a rump com-
ponent are available in sys/rump/Makefile.rump.
Before inclusion the variable RUMPTOP designating the
top of the rump source tree should be set. The path can
be either relative or absolute. An example of a fictional
rump component makefile is presented in Figure 3.

3It is by large also incompatible with dynamically loading kernel
modules, since the kernel will not re-traverse link set entries every time
a module is loaded.

RUMPTOP= /usr/src/sys/rump
.include "${RUMPTOP}/Makefile.rump"

.PATH: ${RUMPTOP}/../myfoo/bar

LIB= rumpfoo_bar

SRCS= foo_dothis.c foo_dothat.c foo_dotdot.c

.include <bsd.lib.mk>

.include <bsd.klinks.mk>

Figure 3: Example of a rump component Makefile.

2.5 Version mix & match
Theoretically, and in some limited cases in the real
world, rumps are portable and work across different
NetBSD versions and even on different operating sys-
tems. This means that the host running a rump does not
have to be the same OS or OS revision as the rump itself.
For example, a rump using NetBSD-current kernel code
can be run on 5.0 if issues described in the following
paragraphs are kept in mind.

The real world limitation is that binary types passed
from the application to the rump kernel and back must
match. In case they do not match, there is no general case
solution as of now, and compatibility code must be man-
ually provided. For example, NetBSD increased the size
of time_t from 32 bits to 64 bits after the NetBSD 5.0
release branch. Current base system file system utilities
address this in compatibility code which translates the
incompatible binary types and makes running possible.

For compiling an arbitrary version rump kernel on
NetBSD the instructions provided in Section 2.3 are valid
apart from the make command name. Instead of using
make, build.sh [9] should be used to build a toolchain for
the target rump kernel version. The nbmake-$arch
script created by build.sh should then be used to build
rump. This ensures that the toolchain can handle every-
thing in the source tree. Compiling (and using) rump on a
non-NetBSD platform is possible, but the process is cur-
rently convoluted, and the details are beyond the scope
of this paper.

2.6 Tools for file systems
Next we introduce tools frequently useful in debugging
file system problems.

• rump $fs: The rump $fs daemons use the puffs [6]
userspace file system framework to provide mount-
able services of the kernel code. These daemons
translate the puffs protocol to the kernel vfs proto-
col by using a library called p2k, or puffs-to-kernel.

For example, the rump_ffs daemon does an FFS

mount. The resulting mount behaves exactly like a
kernel file system from an application’s perspective,
so standard applications such as OpenOffice can be
used against them. The servers, on the other hand,
behave exactly like normal userspace daemons and
a debugger can be attached to them or they may be
otherwise profiled.

The rump kernel file system servers are shipped in
the standard installation of NetBSD starting from
NetBSD 5.0.

• fs-utils: The fs-utils [12] suite provides rump
workalikes for standard POSIX file system utilities
such as ls, cp and rm. Instead of having to mount
a file system through the kernel, the utilities access
the file system contents fully in userspace. This has
the benefit that no kernel support or mounting privi-
leges are required. For example, fsu_ls -lR can
be used as a quick means to verify that file system
operations necessary for a recursive long directory
listing still function after changes to a kernel file
system have been made.

fs-utils is currently available as source code from
the NetBSD othersrc CVS module, or from pkgsrc.

Currently there exist no out-of-the-box rump tools
for debugging networking problems and such programs
must be written for the occasion using the programming
interfaces described next in Section 3.

3 Rump programming

In case tools for the purpose are not available, a new
program must be written. There are only two common
steps across all rumps. First, all the necessary compo-
nents must be linked and loaded before use is attempted.
Second, the rump kernel must be initialized by calling
rump_init() before use is attempted. The rest de-
pends on what the rump in question does. The subject
examined in this Section is interfacing with the rump
kernel. Use of some of the interfaces presented in this
Section is demonstrated later in Section 5.

3.1 Exported function interfaces
A number of function interface classes are exported from
rump to the application. This is comparable to any li-
brary. The available sets of interfaces are discussed next.

System calls

A rump kernel exports a subset of the system calls avail-
able on a regular NetBSD system. These rump system
calls have the same semantics as regular system calls.

process/lwp:

struct lwp *rump_setup_curlwp(pid_t, lwpid_t, int);
struct lwp *rump_get_curlwp(void);
void rump_set_curlwp(struct lwp *);
void rump_clear_curlwp(void);

credentials:

kauth_cred_t rump_cred_create(uid_t, gid_t,
size_t, gid_t *);

kauth_cred_t rump_cred_suserget(void);
void rump_cred_put(kauth_cred_t);

#define rump_cred_suserput(c) rump_cred_destroy(c)
/* COMPAT_NETHACK */
#define WizardMode() rump_cred_suserget()
#define YASD(cred) rump_cred_suserput(cred)

Figure 4: Examples of misc. rump interfaces

Since the rump kernel runs in the same address space
as the application, there is no technical need for a sys-
tem call mechanism – function calls suffice. In fact, the
raison d’être for rump system calls is to provide interface
sugar: having known interfaces available makes rumps
easier to program. Also, converting an existing applica-
tion to use rump for example when trying to reproduce a
problem is easier, since it can be done by replacing the
call points for syscalls in the source code. However, this
method does not deal with libraries making system calls
and they must be addressed separately. A general solu-
tion for libraries is not yet available, although the rump
network paper [7] discusses some options.

The distinguishing factor between rump and regular
system calls is in their naming. All rump system calls
are prefixed with ”rump sys”. For example, the call
rump_sys_open("/my/fisu",O_CREAT,0777)
will, barring an error, create the file ”fisu” in the di-
rectory ”/my”. The resulting file descriptor is valid
only in other rump system calls and passing it to a
regular system call will cause undefined effects and
vice versa. The system calls are declared in the header
<rump/rump_syscalls.h>. The header also acts
as the list of currently supported rump system calls.
Since the call semantics are equal to regular system
calls, documentation is available from regular manual
pages.

rump interfaces

Over the course of using and developing rump, various
interfaces into the kernel bypassing the syscall layer have
proved to be of use. This set of rump interfaces is under
constant development with new ones being added as a
need arises. The current interfaces are available in the
rump.h header. Examples of these interfaces are found
in Figure 4.

Application part

Headers:
/usr/include

rump process

rump bridge

Headers:
sys, sys/rump
-D_KERNEL

path = argv[i];
rump_namei(
 RUMP_NAMEI_LOOKUP,
 FOLLOW, path,
 &vp, ...);
[...]
rump_vp_rele(vp);

rump kernel

Headers:
sys
-D_KERNEL

struct nameidata

rump_namei(args)
{
 nd = args;
 namei(&nd);
 *ret=nd.ni_vp;
}

namei(*ndp)
{
 case LOOKUP:
 [...];
 ndp->ni_vp=dp;
}

Figure 5: rump namespaces. A rump is divided into
three conceptual zones. The rump bridge provides stor-
age for struct nameidata, since the definition is
not available in the application namespace.

VFS interfaces

The original purpose of rump was to run kernel file sys-
tem code as a userspace server. This required access to
the virtual file system interfaces. The complete vnode
interface is available from userspace plus additional mis-
cellaneous vfs interfaces interfaces.

The vnode routines are available after including the
header rump/rumpvnode_if.h. They behave ex-
actly like the kernel interfaces: when called with a given
vnode, they call the file system underlying the vnode.
The only difference is that while kernel operations have
the name VOP_OPER(), the rump exported names are
RUMP_VOP_OPER().

To get a reference to a vnode, the vfs interfaces must
generally be used. They, however, are not introduced by
rumpvnode_if.h, but rather by rump.h. This is due
to the fact that the vnode interface prototypes are au-
togenerated from the kernel’s vnode_if.src, while
the vfs interfaces are handcrafted. Specifically, namei is
available as rump_namei().

3.2 The kernel namespace
Most system headers contain #ifdef _KERNEL sec-
tions and do not provide function prototypes, all struc-
ture definitions or all macros if the header is included
from a userland application, i.e. one which does not de-
fine _KERNEL for its cppflags. While it is possible for
a userspace application to define _KERNEL for its build
and access the values meant for kernel consumers, this
generally results in a good amount of problems due to
name collisions and implicitly included headers. The
_KERNEL namespace division is illustrated in Figure 5.

Even though a rump kernel operates in the kernel
namespace and is compiled with _KERNEL, the rest of

the rump program does not. However, accessing the ker-
nel even where the standard rump framework does not
support it may be useful. We discuss using kernel struc-
tures, macros and functions in the following subsections.

Structures

Some kernel structures are exported to userland. Typ-
ically, they are either structures shared between the
kernel and userland (e.g. struct timespec) or
structures exposed for the benefit of kmem grovelers4

(e.g. struct vattr). While both subclasses of ex-
ported structures can be examined and modified directly
through pointers from the application part of a rump, it
is critical to make sure that both structure definitions are
the same. An excellent example once again is the recent
time_t size change to 64bits, which caused a lot of
structures to become binary incompatible with their old
versions. As mentioned already in Section 2.5, there is
no general solution for mixing incompatible versions at
this point.

If a structure is not exported to userspace, it cannot be
directly accessed from the application part of a rump. If it
must be accessed directly, there are two strategies: either
provide a local copy of the structure for the application
part or provide an interface into the rump kernel which
does the necessary handling. The decision on which ap-
proach to choose is highly dependent on the situation,
and no general recipe can be given.

Preprocessor macros

Preprocessor macros are commonly used throughout the
kernel for bitmasks and magic values passed to inter-
faces. As with structures, some are exported to userland,
but others are hidden behind _KERNEL or in headers not
installed to userland at all. Strategies for use are similar
to structures.

Rump provides definitions for a set of useful values
in the header rumpdefs.h. The values are gener-
ally prefixed to prevent application namespace pollution.
For example, the namei symbol LOOKUP is available as
RUMP_NAMEI_LOOKUP, as used in Figure 5. It should
be noted that while these helper values are provided by
the system, the same disclaimer as for hand-copied struc-
tures apply: the values from the headers installed to user-
land may be out-of-sync with the rump kernel.

Kernel functions

Making a function call from the application part to the
rump kernel is possible for any kernel interface. How-

4A kmem groveler is an application which accesses kernel memory
directly, typically through the kvm(3) interfaces.

source object library final library
prop_array_add -> prop_array_add -> prop_array_add -> rumpns_prop_array_add

compile link rename (objcopy)

Figure 6: Illustration of symbol renaming. The name of the symbol, a function in this case, is displayed for each
step. The diagram applies to both the function definition and in-kernel callers, but not the application part.

ever, this requires access to the function prototype. Gen-
erally, kernel interfaces are not exported to userland, and
therefore not available in the application part except via
the interfaces examined in Section 3.1.

With rumps, there is also another issue when calling
kernel functions directly. In a normal operating sys-
tem scenario, the kernel and user namespaces are dis-
joint. This means that a user program and the kernel
can contain symbols with the same name. For exam-
ple, a standard program using proplib requires the func-
tion prop_array_add() both in the kernel and in
the libprop userspace library. Since the rump kernel is
linked directly against the application, this would result
in a conflict where the same symbol is defined twice. To
address the issue, the symbols in the rump kernel are re-
named en masse after compilation. All symbols that do
not begin with the string ”rump” or ”RUMP” are prefixed
with ”rumpns”. This means that prop_array_add()
will be renamed to rumpns_prop_array_add().
Since both the kernel function definition and the kernel
callers are renamed, this does not affect the runtime be-
havior inside the rump kernel. Since the name is now
different, there are no symbol collisions with userland
applications, and linking can safely be done. An illus-
tration of the different stages of compilation and symbol
renaming is provided in Figure 6.

The renaming means that even if we could access a
function prototype by defining _KERNEL for our C pre-
processor, the function prototype would now be wrong,
since it is lacking the ”rumpns” prefix – userland compo-
nents do not undergo any symbol renaming.

A method for accessing arbitrary kernel routines di-
rectly from the application part is to declare the properly
namespaced prototypes locally in the application. The
downside is that this requires manual work and informa-
tion duplication. An example illustrating this is found in
Figure 7.

As manually exporting numerous routines from the
kernel can get taxing, an alternate strategy may be ap-
plied. This consists of: identify kernel space function-
ality, implement it in the rump kernel, export only one
function and call that. This is illustrated, for comparison
with the previous method, in Figure 8. Unless the bridge
routine fits into an existing rump component, the cost of
this approach is quite high due to having to introduce a

void rumpns_vfs_mount_print(struct mount *,
int, void (*pr)(const char *,));

void rumpns_printf(const char *, ...);

func()
{

struct mount *mp;

rump_sys_mount(MOUNT_THEFS, "/mymnt", ...);
/* do other stuff */
rump_vfs_getmp("/mymnt", &mp);
rumpns_vfs_mount_print(mp, 1, rumpns_printf);

}

Figure 7: Calling a kernel function directly from
userspace code. This simplified listing shows how to
call a kernel diagnostic routine to print information about
a mount point in the rump kernel. It is worth noting that
the printf function pointer passed as the third argument is
from the rumpns namespace, i.e. the kernel printf func-
tion. If plain printf were used, the libc printf function
would be used as a callback. It might or might not have
the correct semantics.

/* file1: rump bridge */
#include <headers>
rump_myprintfunc(const char *path)
{

struct nameidata nd;
int rv;

NDINIT(&nd, LOOKUP, FOLLOW, UIO_USERSPACE, path);
if ((rv = namei(&nd)) != 0)

return rv;
vfs_mount_print(nd.ni_vp->v_mount, 1, printf);
vrele(nd.ni_vp);
return 0;

}

/* file2: application part */
#include <otherheaders>
func()
{

rump_sys_mount(MOUNT_THEFS, "/mymnt", ...);
/* do other stuff */
rump_myprintfunc(path);

}

Figure 8: Calling kernel namespace code through a
self-defined kernel routine. This is another alternative
for implementing the code displayed in Figure 7.

golem> env RUMP_BLKFAIL=500 fsu_ls ffs2.img -l ps
rumpblk: FAULT INJECTION ACTIVE! fail 500/10000. seed 2668677932
-r-xr-xr-x 1 pooka wheel 41675 Apr 29 20:02 ps
golem> env RUMP_BLKFAIL=500 fsu_ls ffs2.img -l ps
rumpblk: FAULT INJECTION ACTIVE! fail 500/10000. seed 4121636030
block fault injection: failing I/O on block 1408
fsu_ls: ps: Input/output error

Figure 9: rump block device fault injection. Fault injection with the above parameters will cause 5% of block I/O
requests to fail. We see two consecutive invocations of the fsu ls tool. The first succeeds and the latter fails because a
failure was randomly injected.

separate library in the process. Since the illustrated case
is very simple, taking this approach is not worth it. How-
ever, especially in case the code needs to inspect struc-
tures declared only in the kernel namespace, the payoff
may be significant. Specifically, if rump would not pro-
vide something like rump_vfs_getmp(), support in
kernel namespace would likely be a good idea.

4 Debugging

In this section we examine some strategies on how to use
rumps to locate and solve kernel problems.

4.1 Fault injection

Fault injection allows to test code error paths by return-
ing fictional faults from routines. In a case where the full
operating system is used, care must be taken not to inject
faults into the wrong components, for example the root
file system. Since a rump is self-contained, very little
care is needed to apply fault injection.

The rump block device driver offers two tunables for
fault injection: the percentage of failed I/O and the seed
for the pseudo random number generator used for de-
ciding which I/O requests fail. Setting both gives re-
peatable faults for the same set of operations performed
on the same file system. The environment variable
RUMP_BLKFAIL controls how many of 10,000 requests
fail on average. The variable RUMP_BLKFAIL_SEED
sets the PRNG seed and can be any integer value. If not
set, a random value will be used.

Figure 9 illustrates how to use fault injection. If the
latter failed case were interesting, it could be repeated by
setting the RUMP_BLKFAIL_SEED environment vari-
able to 4121636030.

While not currently implemented, if would not be dif-
ficult to make the rump network interfaces support a sim-
ilar scheme to introduce packet loss and jitter into the
simulated network.

4.2 Multithreading strategies
Not all development tools work perfectly with threads.
The best example on NetBSD is gdb, which cannot
currently reliably single-step multithreaded programs.
Breakpoints and memory examination work even in mul-
tithreaded programs and all the information is available
from core dumps. Even so, sometimes single stepping is
the best approach to locating a problem.

• While rump makes use of threads and allows com-
ponents to create them, it is possible to attempt to
run without threads. This is done by setting the
environment variable RUMP_THREADS to 0 before
running a rump. It will cause the rump kernel thread
creation to simply ignore a kthread creation request
for a thread it knows it can safely ignore. For ex-
ample, in short debug runs it is not critical that the
namecache purging thread is run. If creation of any
unknown thread is attempted in non-threaded mode,
the rump kernel will panic. Most file systems can
safely be run in non-threaded mode, but for exam-
ple nfs cannot, since it depends on the networking
stack, which is heavily dependent on threads.

• Other utilities such as gprof seem to exhibit even
worse behavior and are sometimes completely un-
willing to work if the application is even linked
against the pthread library. If necessary, the
rumpuser component may be compiled without
any threading support. This is done by editing
rump/librump/rumpuser/Makefile, com-
menting out rumpuser_pth.c and uncomment-
ing rumpuser_pth_dummy.c. With the stubs
in place, threaded programs cannot be run at all, but
some profiling and development tools may give the
results desired.

• In some cases it is possible to fake threads for de-
bugging purposes. For example, the sockin network
component has unthreaded mode debugging code
which assumes that for every sent packet and only a

sent packet there will be an incoming packet. This
causes all network traffic to be tied to the sender and
therefore a receiver thread is not required to handle
asynchronously incoming data. Clearly, this is not a
valid generalization, but sometimes it allows to de-
bug special cases.

• If the problem zone is known, most faults can be
identified by examining the data present and look-
ing at how the code uses the data. The data can
easily be secured by placing a call to panic() at
a suitable location. The core dump can then be ex-
amined for the data.

In case all else fails, the following observation from
Brian Kernighan should be kept in mind: ”The most ef-
fective debugging tool is still careful thought, coupled
with judiciously placed print statements”. With rumps
even slightly less judicious print statements may be a
valid option due to the short test cycle, followed by a
judicious application of grep.

4.3 Valgrind
An extremely useful dynamic analysis tool for userspace
development is Valgrind [10]. It is perhaps best known
for its ability to detect use of uninitialized memory, wide
and dangling pointers, and memory leaks.

There is an old and incomplete but still semifunctional
port of Valgrind to NetBSD, called vg4nsd [2]. While not
all system calls are supported, rumps can occasionally be
run under Valgrind with good results due to the fact that
a rump does not use many host kernel system calls. The
exception is that the current implementation of vg4nbsd
does not support threads and pthread use must be com-
pletely disabled by using the dummy stubs, as described
in Section 4.2.

4.4 Example: single stepping in FFS
Recently one NetBSD developer, who does not usu-
ally work on file systems, encountered a problem on
a deployed system where creating a directory on an
FFS mount with over 4TB of free space always re-
turned ENOSPC. Code reading did not provide any useful
guesses on where the problem was.

Normally debugging the issue would have required
either setting up a kernel development environment or
slowly closing in on the problem through a series of
added print statements and reboots. The use of rump ffs
allowed to single step the problematic code without any
reboots and quickly locate the problem. This is demon-
strated in the reconstruction below.

First, we set the necessary environment variables. The
variable P2K_NODETACH prevents the rump ffs server

from detaching from the terminal via fork and therefore
not requiring gdb fork following modes to be set. A
breakpoint is then set to the mkdir vnode operation im-
plementation, ufs_mkdir.

Notice that we do not use rumpns_ufs_mkdir, but
rather are able to use the original name. This is because
symbol renaming does not touch the debugging infor-
mation generated by a -g compile. If the compiled bi-
nary does not contain debugging symbols, the breakpoint
should be set to the rumpns symbol instead.

golem> setenv RUMP_THREADS 0
golem> setenv P2K_NODETACH
golem> gdb rump_ffs
GNU gdb 6.5
...
(gdb) break ufs_mkdir
Function "ufs_mkdir" not defined.
Make breakpoint pending on future

shared library load? (y or [n]) y
Breakpoint 1 (ufs_mkdir) pending.

The program is started. This mounts the file system
on wd0e to /mnt. The command line parameters for
the server are described on the rump ffs manual page,
and are actually exactly the same as for mount ffs. The
breakpoint is resolved, which means that the necessary
dynamic library was loaded at this stage.

(gdb) run /dev/wd0e /mnt
...
Pending breakpoint "ufs_mkdir" resolved
rump warning: threads not enabled,

not starting vrele thread
rump warning: threads not enabled,

not starting namecache g/c thread

Meanwhile, a directory is created under /mnt using
mkdir. This causes the breakpoint to trigger. Now
the actual debugging in the form of single stepping be-
gins. The mkdir command blocks while debugging takes
place.

Breakpoint 2, ufs_mkdir (v=0xbfbfd918)
at /usr/allsrc/src/sys/rump/fs/lib/
libffs/../../../../ufs/ufs/ufs_vnops.c:1326

1326 struct vop_mkdir_args /* {
(gdb)

The problem is located in the block allocator. The al-
locator is supposed to return a positive result if a block
is successfully allocated. However, due to a signed in-
teger overflow problem, the block number returned was
negative. This caused the calling code to think that allo-
cation failed when it in fact did not. Further examination
revealed that this class of overflow problems was fixed
already months earlier, but the original fix omitted two
code paths.

1381 blkno = cg * fs->fs_fpg + bno;
(gdb) print cg * fs->fs_fpg + bno
$5 = -2049440479
(gdb) print (daddr_t)cg * fs->fs_fpg
$6 = 2245526808

5 Test cases

Kernel test cases written against rump have the advan-
tage of not crashing the test host kernel in case the test
results in a kernel panic. This means it is possible to eas-
ily extract a useful test report out of test which resulted
in a crash. A test run which ends in a kernel panic is il-
lustrated in Figure 10 and described in more detail later
in this Section.

Occasionally, it is desirable to be able to call kernel
interfaces with parameter values that are hard to impose
using system calls, especially in unit testing. One way to
address this in a standard setup is to create a kernel mod-
ule which provides a special system call that performs
the unit test when executed. However, test code tends to
be more error-prone than standard kernel code and will
likely result in unwanted crashes more frequently. With
rump it is possible call arbitrary kernel interfaces by us-
ing techniques described in Section 3. This makes it pos-
sible to generate unit tests with no parameter restrictions
and yet protect against test host kernel crashes.

The Automated Testing Framework (atf) [11] pro-
vides an infrastructure for creating tests and producing
unified reports. Tests can be written either as C programs
or shell scripts. Both options can be used with rumps. C
programs can be used to interface with the rump kernel
as was demonstrated earlier in this paper. Shell scripts
can be used with rump tools, such as fs-utils.

5.1 Example: file descriptor passing

File descriptor passing enables passing open file descrip-
tors from one process to another. This is done by con-
structing a specific IPC message which is sent over a
socket. Recently, NetBSD-current had an off-by-one er-
ror which caused the file descriptor array to be indexed
by an invalid file descriptor. If the passed file descrip-
tor was a large number, the array index would point to
hyperspace and result in a kernel panic.

The rump regression test set for kernel file descriptor
passing consists of two separate test cases. The first case
tests that file descriptor passing works as expected. The
second case attempts to pass an invalid file descriptor and
checks that it gets a proper error message as the result.

The test cases are found in the NetBSD source tree in
src/tests/syscall/t_cmsg.c. We will go over
them step-by-step to demonstrate how to unify atf and
rump for writing test cases. Some of the presented code
has been modified for presentation purposes by leaving
out for example error handling. Please refer to the source
tree for the full version. We begin our demonstration
with the case verifying that out-of-bounds access is not
allowed, since out of the two it is simpler.

t_cmsg (1/1): 2 test cases
cmsg_sendfd: Passed.
cmsg_sendfd_bounds: Failed: Test case did not

exit cleanly: Segmentation fault (core dumped)

Failed test cases:
t_cmsg:cmsg_sendfd_bounds

Figure 10: Example of a test resulting in a kernel
panic. If run against a live kernel, the failure would have
caused the system to crash and an incomplete test report.

Out-of-bounds case

The test case body and local variables are declared.

ATF_TC_BODY(cmsg_sendfd_bounds, tc)
{

struct cmsghdr *cmp;
struct msghdr msg;
struct iovec iov;
int s[2];
int fd;

rump is initialized and a socketpair to be used for de-
scriptor passing is opened.

rump_init();
if (rump_sys_socketpair(AF_LOCAL,
SOCK_STREAM, 0, s) == -1)
atf_tc_fail("rump_sys_socketpair");

The control structure to be used for file descriptor pass-
ing is initialized.

cmp = malloc(CMSG_LEN(sizeof(int)));

iov.iov_base = &fd;
iov.iov_len = sizeof(int);

cmp->cmsg_level = SOL_SOCKET;
cmp->cmsg_type = SCM_RIGHTS;
cmp->cmsg_len = CMSG_LEN(sizeof(int));

msg.msg_iov = &iov;
msg.msg_iovlen = 1;
msg.msg_name = NULL;
msg.msg_namelen = 0;
msg.msg_control = cmp;
msg.msg_controllen = CMSG_LEN(sizeof(int));

An invalid value is inserted as the descriptor to be passed.

*(int *)CMSG_DATA(cmp) = 0x12345678;

Descriptor passing is attempted. The rump kernel should
return an error indicating that an invalid file descriptor
was being passed.

rump_sys_sendmsg(s[0], &msg, 0);
if (errno != EBADF)

atf_tc_fail("descriptor passing failed: "
"expected EBADF (9), got %d\n(%s)",
errno, strerror(errno));

}

In Figure 10, the fix to this problem had been reverted
for demonstration purposes. The call to sendmsg did not
return at all because the process got a segmentation vio-
lation signal for out-of-bounds indexing of the array.

Valid case

The test for file descriptor passing from one process to
another is more complex than the previous, since we have
to simulate two different processes in the rump kernel –
passing a file descriptor within a single process is not in-
teresting, as it is the same as dup(). Since rump does
not support fork(), we need to manage multiple pro-
cesses in another fashion using a rump interface. The
lack of fork also rules out the use of socketpair for creat-
ing the communication channel. Instead, we use a bound
Unix domain socket, which is available to both processes
in the file system namespace.

First, we mount tmpfs as the root file system over the
current root. This is done because the rump root file is
very barebones and does not support most operations. In
this test we want to create a Unix domain socket on the
file system.

rump_init();
rump_sys_mount(MOUNT_TMPFS, "/", 0,
&args, sizeof(args));

Next, we create the file system socket at the location
SOCKPATH and start listening for incoming connection
requests.

memset(&sun, 0, sizeof(sun));
sun.sun_family = AF_LOCAL;
strncpy(sun.sun_path, SOCKPATH, sizeof(SOCKPATH));
s1 = rump_sys_socket(AF_LOCAL, SOCK_STREAM, 0);
rump_sys_bind(s1, (struct sockaddr *)&sun,
SUN_LEN(&sun));

rump_sys_listen(s1, 1);

Then we store our current lwp and create a new process
and a new lwp. We connect our new process to the socket
opened by the initial process.

l1 = rump_get_curlwp();
l2 = rump_newproc_switch();
[...]
rump_sys_connect(s2, (struct sockaddr *)&sun,
SUN_LEN(&sun));

For testing purposes, we create a file onto our root tmpfs
file system and write a magic string into the file. We then
rewind the file descriptor to the beginning of the file and
pass the file descriptor in the usual way.

#define MAGICSTRING "duam xnaht"
fd = rump_sys_open("/foobie",
O_RDWR|O_CREAT, 0777);

rump_sys_write(fd, MAGICSTRING,
sizeof(MAGICSTRING));

rump_sys_lseek(fd, 0, SEEK_SET);
[...]

*(int *)CMSG_DATA(cmp) = fd;
rump_sys_sendmsg(s2, &msg, 0);

Finally, we switch back the original process, accept the
incoming connection, get the passed file descriptor and
verify we can read the magic string from it. If the con-
tents read match the ones written, we can conclude that

we were able to pass a file descriptor from one process
to another and use it with expected results in the process
it was passed to.

rump_set_curlwp(l1);
sgot = rump_sys_accept(s1,
(struct sockaddr *)&sun, &sl);

rump_sys_recvmsg(sgot, &msg, 0);
rfd = *(int *)CMSG_DATA(cmp);

memset(buf, 0, sizeof(buf));
rump_sys_read(rfd, buf, sizeof(buf));
if (strcmp(buf, MAGICSTRING) != 0)

atf_tc_fail("expected \"%s\", "
"got \"%s\"", MAGICSTRING, buf);

Additionally, to cope with the possibility of the test case
hanging due to blocking socket I/O, we set an atf time-
out. If the test case does not finish in two seconds, it is
deemed to have failed.

atf_tc_set_md_var(tc, "timeout", "2");

Ultimately, a Makefile is necessary for building the test
case. Apart from additional rump component libraries
we must specify, the Makefile is like any other.

TESTS_C= t_cmsg

LDADD.t_cmsg+= -lrumpnet_local -lrumpnet_net
LDADD.t_cmsg+= -lrumpnet -lrumpfs_tmpfs -lrumpvfs
LDADD.t_cmsg+= -lrump -lrumpuser -lpthread

It is worth noting that even without tmpfs this test case
would depend on the vfs component. This is because the
Unix domain local socket component uses the file sys-
tem code for creating bound sockets in the file system
namespace.

6 Conclusions

This paper described the uses of the Runnable Userspace
Meta Program (rump) framework for kernel development
and debugging and provided comparisons to currently
popular approaches. We started by explaining that rump
consists of kernel subsystems grouped into components
and is provided as shared libraries in userspace. We then
went into details on how to use rump for kernel develop-
ment, including information about the programming in-
terfaces, how to compile, how to debug and how to write
regression tests.

Rump provides a fast way for doing incremental kernel
development. It supplies a safe environment for learning
about how the kernel works and enables non-expert users
to provide more data in bug reports due to the fact that ex-
tracting it no longer requires special knowledge on how
to do kernel debugging – regular userspace debugging
skills suffice.

Future work includes complete and accurate support
for more kernel subsystems. Additionally, more auto-
mated regression tests and tools for no-setup execution
are being planned.

6.1 Further resources
• The rump web page [5] provides information on the

current status of development.

• The rump.3, p2k.3 and rump $fs.8 NetBSD manual
pages [1] provide information about programming
interfaces and use.

• The ukfs library, as documented in the ukfs.3 man-
ual page, provides an alternative programming in-
terface for rump file systems (not discussed in this
paper).

• The Automated Testing Framework [11] provides
an infrastructure for testing. As was demonstrated
in this paper, it integrates well with rump for conve-
nient kernel regression testing.

Acknowledgments
This part of the ongoing rump project was funded by The
Nokia Foundation. Stephen Borrill helped with proof-
reading.

References

[1] NetBSD Manual Pages. http://man.NetBSD.org/.

[2] Valgrind for NetBSD. http://vg4nbsd.berlios.de/.

[3] BARHAM, P., DRAGOVIC, B., FRASER, K.,
HAND, S., HARRIS, T., HO, A., NEUGEBAUER,
R., PRATT, I., AND WARFIELD, A. Xen and the art
of virtualization. In SOSP ’03: Proceedings of the
19th ACM Symposium on Operating Systems Prin-
ciples (2003), pp. 164–177.

[4] BELLARD, F. QEMU, a Fast and Portable Dynamic
Translator. In USENIX Annual Technical Confer-
ence, FREENIX Track (2005), pp. 41–46.

[5] KANTEE, A. Runnable Userspace Meta Programs.
http://www.NetBSD.org/docs/rump/.

[6] KANTEE, A. puffs - Pass-to-Userspace Frame-
work File System. In Proc. of AsiaBSDCon (2007),
pp. 29–42.

[7] KANTEE, A. Environmental Independence: BSD
Kernel TCP/IP in Userspace. In Proc. of AsiaBSD-
Con (2009), pp. 71–80.

[8] LEHEY, G. Debugging kernel problems, 2006.

[9] MEWBURN, L., AND GREEN, M. build.sh: Cross-
building NetBSD. In Proc. of BSDCon (2003),
pp. 47–56.

[10] NETHERCOTE, N., AND SEWARD, J. Valgrind: a
framework for heavyweight dynamic binary instru-
mentation. In Proc. of PLDI (2007), pp. 89–100.

[11] VIDAL, J. M. M. Automated testing framework.
http://www.NetBSD.org/ jmmv/atf/.

[12] YSMAL, A. FS Utils.
http://NetBSD.org/˜stacktic/fs-utils.html.

